Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

2.

Cytochrome bd-I in Escherichia coli is less sensitive than cytochromes bd-II or bo'' to inhibition by the carbon monoxide-releasing molecule, CORM-3: N-acetylcysteine reduces CO-RM uptake and inhibition of respiration.

Jesse HE, Nye TL, McLean S, Green J, Mann BE, Poole RK.

Biochim Biophys Acta. 2013 Sep;1834(9):1693-703. doi: 10.1016/j.bbapap.2013.04.019. Epub 2013 Apr 26.

3.

Carbon monoxide-releasing molecule-3 (CORM-3; Ru(CO)3Cl(glycinate)) as a tool to study the concerted effects of carbon monoxide and nitric oxide on bacterial flavohemoglobin Hmp: applications and pitfalls.

Tinajero-Trejo M, Denby KJ, Sedelnikova SE, Hassoubah SA, Mann BE, Poole RK.

J Biol Chem. 2014 Oct 24;289(43):29471-82. doi: 10.1074/jbc.M114.573444. Epub 2014 Sep 5.

4.

Ru(CO)3Cl(Glycinate) (CORM-3): a carbon monoxide-releasing molecule with broad-spectrum antimicrobial and photosensitive activities against respiration and cation transport in Escherichia coli.

Wilson JL, Jesse HE, Hughes B, Lund V, Naylor K, Davidge KS, Cook GM, Mann BE, Poole RK.

Antioxid Redox Signal. 2013 Aug 10;19(5):497-509. doi: 10.1089/ars.2012.4784. Epub 2013 Feb 4.

5.

CO-Releasing Molecules Have Nonheme Targets in Bacteria: Transcriptomic, Mathematical Modeling and Biochemical Analyses of CORM-3 [Ru(CO)3Cl(glycinate)] Actions on a Heme-Deficient Mutant of Escherichia coli.

Wilson JL, Wareham LK, McLean S, Begg R, Greaves S, Mann BE, Sanguinetti G, Poole RK.

Antioxid Redox Signal. 2015 Jul 10;23(2):148-62. doi: 10.1089/ars.2014.6151. Epub 2015 Apr 28.

6.

CORM-3, a water soluble CO-releasing molecule, uncouples mitochondrial respiration via interaction with the phosphate carrier.

Long R, Salouage I, Berdeaux A, Motterlini R, Morin D.

Biochim Biophys Acta. 2014 Jan;1837(1):201-9. doi: 10.1016/j.bbabio.2013.10.002. Epub 2013 Oct 23.

7.

Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages.

Sawle P, Foresti R, Mann BE, Johnson TR, Green CJ, Motterlini R.

Br J Pharmacol. 2005 Jul;145(6):800-10.

8.

Analysis of the bacterial response to Ru(CO)3Cl(Glycinate) (CORM-3) and the inactivated compound identifies the role played by the ruthenium compound and reveals sulfur-containing species as a major target of CORM-3 action.

McLean S, Begg R, Jesse HE, Mann BE, Sanguinetti G, Poole RK.

Antioxid Redox Signal. 2013 Dec 10;19(17):1999-2012. doi: 10.1089/ars.2012.5103. Epub 2013 Apr 16.

9.

Vasorelaxing effects and inhibition of nitric oxide in macrophages by new iron-containing carbon monoxide-releasing molecules (CO-RMs).

Motterlini R, Sawle P, Hammad J, Mann BE, Johnson TR, Green CJ, Foresti R.

Pharmacol Res. 2013 Feb;68(1):108-17. doi: 10.1016/j.phrs.2012.12.001. Epub 2012 Dec 17.

10.

Effects of carbon monoxide-releasing molecules on pulmonary vasoreactivity in isolated perfused lungs.

Pak O, Bakr AG, Gierhardt M, Albus J, Strielkov I, Kroschel F, Hoeres T, Hecker M, Ghofrani HA, Seeger W, Weissmann N, Sommer N.

J Appl Physiol (1985). 2016 Jan 15;120(2):271-81. doi: 10.1152/japplphysiol.00726.2015. Epub 2015 Nov 19.

11.

Differential antibacterial activity against Pseudomonas aeruginosa by carbon monoxide-releasing molecules.

Desmard M, Foresti R, Morin D, Dagouassat M, Berdeaux A, Denamur E, Crook SH, Mann BE, Scapens D, Montravers P, Boczkowski J, Motterlini R.

Antioxid Redox Signal. 2012 Jan 15;16(2):153-63. doi: 10.1089/ars.2011.3959. Epub 2011 Sep 15. Erratum in: Antioxid Redox Signal. 2012 Mar 15;16(5):469. Dagoussat, Maylis [corrected to Dagouassat, Maylis]..

PMID:
21864022
12.

Effects of carbon monoxide releasing molecule-liberated CO on severe acute pancreatitis in rats.

Chen P, Sun B, Chen H, Wang G, Pan S, Kong R, Bai X, Wang S.

Cytokine. 2010 Jan;49(1):15-23. doi: 10.1016/j.cyto.2009.09.013. Epub 2009 Nov 8.

PMID:
19900821
13.

A carbon monoxide-releasing molecule (CORM-3) attenuates lipopolysaccharide- and interferon-gamma-induced inflammation in microglia.

Bani-Hani MG, Greenstein D, Mann BE, Green CJ, Motterlini R.

Pharmacol Rep. 2006;58 Suppl:132-44.

14.

Carbon monoxide-releasing antibacterial molecules target respiration and global transcriptional regulators.

Davidge KS, Sanguinetti G, Yee CH, Cox AG, McLeod CW, Monk CE, Mann BE, Motterlini R, Poole RK.

J Biol Chem. 2009 Feb 13;284(7):4516-24. doi: 10.1074/jbc.M808210200. Epub 2008 Dec 17.

15.
16.

CO from enhanced HO activity or from CORM-2 inhibits both O2- and NO production and downregulates HO-1 expression in LPS-stimulated macrophages.

Srisook K, Han SS, Choi HS, Li MH, Ueda H, Kim C, Cha YN.

Biochem Pharmacol. 2006 Jan 12;71(3):307-18. Epub 2005 Dec 2.

PMID:
16329999
17.

Carbon monoxide reduces neuropathic pain and spinal microglial activation by inhibiting nitric oxide synthesis in mice.

Hervera A, Leánez S, Negrete R, Motterlini R, Pol O.

PLoS One. 2012;7(8):e43693. doi: 10.1371/journal.pone.0043693. Epub 2012 Aug 22.

18.

Therapeutic applications of carbon monoxide-releasing molecules.

Motterlini R, Mann BE, Foresti R.

Expert Opin Investig Drugs. 2005 Nov;14(11):1305-18. Review.

PMID:
16255672
19.

Cell damage following carbon monoxide releasing molecule exposure: implications for therapeutic applications.

Winburn IC, Gunatunga K, McKernan RD, Walker RJ, Sammut IA, Harrison JC.

Basic Clin Pharmacol Toxicol. 2012 Jul;111(1):31-41. doi: 10.1111/j.1742-7843.2012.00856.x. Epub 2012 Feb 23.

20.

Reactive oxygen species mediate bactericidal killing elicited by carbon monoxide-releasing molecules.

Tavares AF, Teixeira M, Romão CC, Seixas JD, Nobre LS, Saraiva LM.

J Biol Chem. 2011 Jul 29;286(30):26708-17. doi: 10.1074/jbc.M111.255752. Epub 2011 Jun 6.

Supplemental Content

Support Center