Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 76

1.

Note: Heated flyer-plate impact system.

Dolan DH, Seagle CT, Ao T, Hacking RG.

Rev Sci Instrum. 2014 Jul;85(7):076102. doi: 10.1063/1.4890278.

PMID:
25085187
2.

Laser-driven flyer plates for shock compression science: launch and target impact probed by photon Doppler velocimetry.

Curtis AD, Banishev AA, Shaw WL, Dlott DD.

Rev Sci Instrum. 2014 Apr;85(4):043908. doi: 10.1063/1.4871361.

PMID:
24784627
3.

Plasma-accelerated flyer-plates for equation of state studies.

Fratanduono DE, Smith RF, Boehly TR, Eggert JH, Braun DG, Collins GW.

Rev Sci Instrum. 2012 Jul;83(7):073504. doi: 10.1063/1.4732823.

PMID:
22852692
4.

Fiber-coupled laser-driven flyer plates system.

Zhao XH, Zhao X, Shan GC, Gao Y.

Rev Sci Instrum. 2011 Apr;82(4):043904. doi: 10.1063/1.3581220.

PMID:
21529022
5.

The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments.

Wang G, He J, Zhao J, Tan F, Sun C, Mo J, Xong X, Wu G.

Rev Sci Instrum. 2011 Sep;82(9):095105. doi: 10.1063/1.3633773.

PMID:
21974617
6.

Indirect ignition of energetic materials with laser-driven flyer plates.

Dean SW, De Lucia FC, Gottfried JL.

Appl Opt. 2017 Jan 20;56(3):B134-B141. doi: 10.1364/AO.56.00B134.

PMID:
28157876
7.

High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments.

Zhang X, Wang G, Zhao J, Tan F, Luo B, Sun C.

Rev Sci Instrum. 2014 May;85(5):055110. doi: 10.1063/1.4875705.

PMID:
24880418
8.

Simplified laser-driven flyer plates for shock compression science.

Brown KE, Shaw WL, Zheng X, Dlott DD.

Rev Sci Instrum. 2012 Oct;83(10):103901. doi: 10.1063/1.4754717.

PMID:
23126776
9.

High-energy flat-top beams for laser launching using a Gaussian mirror.

Fujiwara H, Brown KE, Dlott DD.

Appl Opt. 2010 Jul 1;49(19):3723-31. doi: 10.1364/AO.49.003723.

PMID:
20648138
10.

Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.

Paisley DL, Luo SN, Greenfield SR, Koskelo AC.

Rev Sci Instrum. 2008 Feb;79(2 Pt 1):023902. doi: 10.1063/1.2839399.

PMID:
18315311
11.

Temperature measurements of heated microcantilevers using scanning thermoreflectance microscopy.

Kim J, Han S, Walsh T, Park K, Jae Lee B, King WP, Lee J.

Rev Sci Instrum. 2013 Mar;84(3):034903. doi: 10.1063/1.4797621.

PMID:
23556839
12.

Note: Simultaneous determination of local temperature and thickness of heated cantilevers using two-wavelength thermoreflectance.

Park H, Lee BJ, Lee J.

Rev Sci Instrum. 2014 Mar;85(3):036109. doi: 10.1063/1.4869079.

PMID:
24689637
13.

Shock experiments and numerical simulations on low energy portable electrically exploding foil accelerators.

Saxena AK, Kaushik TC, Gupta SC.

Rev Sci Instrum. 2010 Mar;81(3):033508. doi: 10.1063/1.3327818.

PMID:
20370178
14.

Note: Accuracy of velocity correction for impact of a laser-accelerated miniature flyer with lithium fluoride shock-compressed along the [100] axis.

Wakabayashi K, Matsumura T, Nakayama Y, Koshi M.

Rev Sci Instrum. 2011 Feb;82(2):026112. doi: 10.1063/1.3553293.

PMID:
21361651
15.

A flyer-impact technique for measuring viscosity of metal under shock compression.

Li Y, Liu F, Ma X, Li Y, Yu M, Zhang J, Jing F.

Rev Sci Instrum. 2009 Jan;80(1):013903. doi: 10.1063/1.3069284.

PMID:
19191443
16.

High strain rate metalworking with vaporizing foil actuator: control of flyer velocity by varying input energy and foil thickness.

Vivek A, Hansen SR, Daehn GS.

Rev Sci Instrum. 2014 Jul;85(7):075101. doi: 10.1063/1.4884647.

PMID:
25085167
17.

Thermophysical properties of multi-shock compressed dense argon.

Chen QF, Zheng J, Gu YJ, Chen YL, Cai LC, Shen ZJ.

J Chem Phys. 2014 Feb 21;140(7):074202. doi: 10.1063/1.4865129.

PMID:
24559345
18.

A new design of indirectly heated cathode based strip type electron gun.

Maiti N, Lijeesh K, Barve UD, Quadri N, Tembhare GU, Mukherjee S, Thakur KB, Das AK.

Rev Sci Instrum. 2013 Aug;84(8):083302. doi: 10.1063/1.4817207.

PMID:
24007056
19.

A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading.

Wang G, Luo B, Zhang X, Zhao J, Sun C, Tan F, Chong T, Mo J, Wu G, Tao Y.

Rev Sci Instrum. 2013 Jan;84(1):015117. doi: 10.1063/1.4788935.

PMID:
23387705
20.

Thermoreflectance temperature measurement with millimeter wave.

Pradere C, Caumes JP, BenKhemis S, Pernot G, Palomo E, Dilhaire S, Batsale JC.

Rev Sci Instrum. 2014 Jun;85(6):064904. doi: 10.1063/1.4884639.

PMID:
24985839

Supplemental Content

Support Center