Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Partial Activation of natural killer and γδ T cells by classical swine fever viruses is associated with type I interferon elicited from plasmacytoid dendritic cells.

Franzoni G, Edwards JC, Kurkure NV, Edgar DS, Sanchez-Cordon PJ, Haines FJ, Salguero FJ, Everett HE, Bodman-Smith KB, Crooke HR, Graham SP.

Clin Vaccine Immunol. 2014 Oct;21(10):1410-20. doi: 10.1128/CVI.00382-14. Epub 2014 Jul 30.

2.

N(pro) of classical swine fever virus prevents type I interferon-mediated priming of conventional dendritic cells for enhanced interferon-α response.

Hüsser L, Ruggli N, Summerfield A.

J Interferon Cytokine Res. 2012 May;32(5):221-9. doi: 10.1089/jir.2011.0068. Epub 2012 Feb 7.

PMID:
22313263
3.

T-cell factor-4 and MHC upregulation in pigs receiving a live attenuated classical swine fever virus (CSFV) vaccine strain with interferon-gamma adjuvant.

Fan YH, Lin YL, Hwang YC, Yang HC, Chiu HC, Chiou SH, Jong MH, Chow KC, Lin CC.

Vet J. 2016 Oct;216:148-56. doi: 10.1016/j.tvjl.2016.07.009. Epub 2016 Jul 19.

PMID:
27687943
4.

Interferon-gamma induction correlates with protection by DNA vaccine expressing E2 glycoprotein against classical swine fever virus infection in domestic pigs.

Tarradas J, Argilaguet JM, Rosell R, Nofrarías M, Crisci E, Córdoba L, Pérez-Martín E, Díaz I, Rodríguez F, Domingo M, Montoya M, Ganges L.

Vet Microbiol. 2010 Apr 21;142(1-2):51-8. doi: 10.1016/j.vetmic.2009.09.043. Epub 2009 Sep 30.

PMID:
19896784
5.

Assessment of the phenotype and functionality of porcine CD8 T cell responses following vaccination with live attenuated classical swine fever virus (CSFV) and virulent CSFV challenge.

Franzoni G, Kurkure NV, Edgar DS, Everett HE, Gerner W, Bodman-Smith KB, Crooke HR, Graham SP.

Clin Vaccine Immunol. 2013 Oct;20(10):1604-16. doi: 10.1128/CVI.00415-13. Epub 2013 Aug 21.

6.

Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells.

Bauhofer O, Summerfield A, McCullough KC, Ruggli N.

Virology. 2005 Dec 5;343(1):93-105. Epub 2005 Sep 8.

7.

The kinetics of cytokine production and CD25 expression by porcine lymphocyte subpopulations following exposure to classical swine fever virus (CSFV).

Suradhat S, Sada W, Buranapraditkun S, Damrongwatanapokin S.

Vet Immunol Immunopathol. 2005 Jul 15;106(3-4):197-208.

PMID:
15963818
8.
9.

Characterisation of virus-specific peripheral blood cell cytokine responses following vaccination or infection with classical swine fever viruses.

Graham SP, Everett HE, Johns HL, Haines FJ, La Rocca SA, Khatri M, Wright IK, Drew T, Crooke HR.

Vet Microbiol. 2010 Apr 21;142(1-2):34-40. doi: 10.1016/j.vetmic.2009.09.040. Epub 2009 Sep 30.

PMID:
19854006
10.

Characterisation of vaccine-induced, broadly cross-reactive IFN-γ secreting T cell responses that correlate with rapid protection against classical swine fever virus.

Graham SP, Haines FJ, Johns HL, Sosan O, La Rocca SA, Lamp B, Rümenapf T, Everett HE, Crooke HR.

Vaccine. 2012 Apr 5;30(17):2742-8. doi: 10.1016/j.vaccine.2012.02.029. Epub 2012 Feb 23.

PMID:
22366027
11.

The correlation of virus-specific interferon-gamma production and protection against classical swine fever virus infection.

Suradhat S, Intrakamhaeng M, Damrongwatanapokin S.

Vet Immunol Immunopathol. 2001 Dec;83(3-4):177-89.

PMID:
11730928
12.

DC-like cell-dependent activation of human natural killer cells by the bisphosphonate zoledronic acid is regulated by γδ T lymphocytes.

Nussbaumer O, Gruenbacher G, Gander H, Thurnher M.

Blood. 2011 Sep 8;118(10):2743-51. doi: 10.1182/blood-2011-01-328526. Epub 2011 Jun 14.

13.

Classical swine fever virus N(pro) limits type I interferon induction in plasmacytoid dendritic cells by interacting with interferon regulatory factor 7.

Fiebach AR, Guzylack-Piriou L, Python S, Summerfield A, Ruggli N.

J Virol. 2011 Aug;85(16):8002-11. doi: 10.1128/JVI.00330-11. Epub 2011 Jun 15.

14.

Classical swine fever virus induces activation of plasmacytoid and conventional dendritic cells in tonsil, blood, and spleen of infected pigs.

Jamin A, Gorin S, Cariolet R, Le Potier MF, Kuntz-Simon G.

Vet Res. 2008 Jan-Feb;39(1):7. Epub 2007 Nov 20.

15.

Classical swine fever virus suppresses maturation and modulates functions of monocyte-derived dendritic cells without activating nuclear factor kappa B.

Chen LJ, Dong XY, Shen HY, Zhao MQ, Ju CM, Yi L, Zhang XT, Kang YM, Chen JD.

Res Vet Sci. 2012 Aug;93(1):529-37. doi: 10.1016/j.rvsc.2011.06.026. Epub 2011 Jul 20.

PMID:
21764089
16.
17.

Porcine T lymphocytes and NK cells--an update.

Gerner W, Käser T, Saalmüller A.

Dev Comp Immunol. 2009 Mar;33(3):310-20. doi: 10.1016/j.dci.2008.06.003. Epub 2008 Jul 2. Review.

PMID:
18601948
18.

IFN-γ production by human natural killer cells in response to HCV-infected hepatoma cells is dependent on accessory cells.

Zhang S, Saha B, Kodys K, Szabo G.

J Hepatol. 2013 Sep;59(3):442-9. doi: 10.1016/j.jhep.2013.04.022. Epub 2013 May 7.

19.

HCMV infection of PDCs deviates the NK cell response into cytokine-producing cells unable to perform cytotoxicity.

Cederarv M, Söderberg-Nauclér C, Odeberg J.

Immunobiology. 2009;214(5):331-41. doi: 10.1016/j.imbio.2008.10.009. Epub 2009 Jan 18.

PMID:
19152985
20.

The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus.

Lim DS, Yawata N, Selva KJ, Li N, Tsai CY, Yeong LH, Liong KH, Ooi EE, Chong MK, Ng ML, Leo YS, Yawata M, Wong SB.

J Immunol. 2014 Nov 15;193(10):5065-75. doi: 10.4049/jimmunol.1302240. Epub 2014 Oct 15.

Supplemental Content

Support Center