Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Non-destructive observation of intact bacteria and viruses in water by the highly sensitive frequency transmission electric-field method based on SEM.

Ogura T.

Biochem Biophys Res Commun. 2014 Aug 8;450(4):1684-9. doi: 10.1016/j.bbrc.2014.07.062. Epub 2014 Jul 21.

2.
3.

Direct observation of unstained biological specimens in water by the frequency transmission electric-field method using SEM.

Ogura T.

PLoS One. 2014 Mar 20;9(3):e92780. doi: 10.1371/journal.pone.0092780. eCollection 2014.

4.

Direct observation of unstained wet biological samples by scanning-electron generation X-ray microscopy.

Ogura T.

Biochem Biophys Res Commun. 2010 Jan 1;391(1):198-202. doi: 10.1016/j.bbrc.2009.11.031. Epub 2009 Nov 10.

PMID:
19900411
6.

A high contrast method of unstained biological samples under a thin carbon film by scanning electron microscopy.

Ogura T.

Biochem Biophys Res Commun. 2008 Dec 5;377(1):79-84. doi: 10.1016/j.bbrc.2008.09.097. Epub 2008 Oct 1.

PMID:
18834858
7.

Analyzing indirect secondary electron contrast of unstained bacteriophage T4 based on SEM images and Monte Carlo simulations.

Ogura T.

Biochem Biophys Res Commun. 2009 Mar 6;380(2):254-9. doi: 10.1016/j.bbrc.2009.01.046. Epub 2009 Jan 21.

PMID:
19166816
8.

Measurement of the unstained biological sample by a novel scanning electron generation X-ray microscope based on SEM.

Ogura T.

Biochem Biophys Res Commun. 2009 Aug 7;385(4):624-9. doi: 10.1016/j.bbrc.2009.05.107. Epub 2009 May 30.

PMID:
19486897
9.

High-contrast observation of unstained proteins and viruses by scanning electron microscopy.

Ogura T.

PLoS One. 2012;7(10):e46904. doi: 10.1371/journal.pone.0046904. Epub 2012 Oct 8.

10.

Double-layer coating for high-resolution low-temperature scanning electron microscopy.

Walther P, Wehrli E, Hermann R, Müller M.

J Microsc. 1995 Sep;179(Pt 3):229-37.

PMID:
7473691
11.

High-resolution x-ray observation of unstained samples by a newly developed SGXM.

Ogura T.

Nanotechnology. 2010 Jul 23;21(29):295501. doi: 10.1088/0957-4484/21/29/295501. Epub 2010 Jul 5.

PMID:
20601766
13.

Backscattered electron imaging for high resolution surface scanning electron microscopy with a new type YAG-detector.

Walther P, Autrata R, Chen Y, Pawley JB.

Scanning Microsc. 1991 Jun;5(2):301-9; discussion 310.

PMID:
1947922
14.

Observations of unstained biological specimens using a low-energy, high-resolution STEM.

Takaoka A, Hasegawa T.

J Electron Microsc (Tokyo). 2006 Jun;55(3):157-63. Epub 2006 Jun 28.

PMID:
16809349
15.

Progress in scanning electron microscopy of frozen-hydrated biological specimens.

Hermann R, Müller M.

Scanning Microsc. 1993 Mar;7(1):343-9; discussion 349-50.

PMID:
8316804
16.

High-resolution scanning electron microscopy of frozen-hydrated cells.

Walther P, Chen Y, Pech LL, Pawley JB.

J Microsc. 1992 Nov;168(Pt 2):169-80.

PMID:
1464901
17.

Scanning electron microscopy of food-poisoning bacterium Bacillus cereus using a variable-pressure SEM.

Nishimura M, Wada M, Akiba T, Yamada M.

J Electron Microsc (Tokyo). 2003;52(2):153-9.

PMID:
12868586
18.

Methods for scanning and transmission electron microscopy of normal and damaged gram-negative bacteria.

Fuglesang JE, Namork E, Fordan B, Johansen BV.

NIPH Ann. 1980 Dec;3(2):133-9.

PMID:
7012686
19.

The scanning electron microscope in microbiology and diagnosis of infectious disease.

Golding CG, Lamboo LL, Beniac DR, Booth TF.

Sci Rep. 2016 May 23;6:26516. doi: 10.1038/srep26516.

20.

Supplemental Content

Support Center