Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Biochemical and structural insights into microtubule perturbation by CopN from Chlamydia pneumoniae.

Nawrotek A, Guimarães BG, Velours C, Subtil A, Knossow M, Gigant B.

J Biol Chem. 2014 Sep 5;289(36):25199-210. doi: 10.1074/jbc.M114.568436. Epub 2014 Jul 23.

2.

The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly.

Archuleta TL, Du Y, English CA, Lory S, Lesser C, Ohi MD, Ohi R, Spiller BW.

J Biol Chem. 2011 Sep 30;286(39):33992-8. doi: 10.1074/jbc.M111.258426. Epub 2011 Aug 13.

3.

Scc1 (CP0432) and Scc4 (CP0033) function as a type III secretion chaperone for CopN of Chlamydia pneumoniae.

Silva-Herzog E, Joseph SS, Avery AK, Coba JA, Wolf K, Fields KA, Plano GV.

J Bacteriol. 2011 Jul;193(14):3490-6. doi: 10.1128/JB.00203-11. Epub 2011 May 13.

4.

Interaction between components of the type III secretion system of Chlamydiaceae.

Slepenkin A, de la Maza LM, Peterson EM.

J Bacteriol. 2005 Jan;187(2):473-9.

5.

Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length.

Zheng X, Ramani A, Soni K, Gottardo M, Zheng S, Ming Gooi L, Li W, Feng S, Mariappan A, Wason A, Widlund P, Pozniakovsky A, Poser I, Deng H, Ou G, Riparbelli M, Giuliano C, Hyman AA, Sattler M, Gopalakrishnan J, Li H.

Nat Commun. 2016 Jun 16;7:11874. doi: 10.1038/ncomms11874.

6.

Dynamic subunit exchange and the regulation of microtubule assembly by the stress response protein human alphaB crystallin.

Houck SA, Clark JI.

PLoS One. 2010 Jul 26;5(7):e11795. doi: 10.1371/journal.pone.0011795.

7.

New Insights into the Coupling between Microtubule Depolymerization and ATP Hydrolysis by Kinesin-13 Protein Kif2C.

Wang W, Shen T, Guerois R, Zhang F, Kuerban H, Lv Y, Gigant B, Knossow M, Wang C.

J Biol Chem. 2015 Jul 24;290(30):18721-31. doi: 10.1074/jbc.M115.646919. Epub 2015 Jun 8.

8.

Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ.

de Pereda JM, Leynadier D, Evangelio JA, Chacón P, Andreu JM.

Biochemistry. 1996 Nov 12;35(45):14203-15.

PMID:
8916905
9.

The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth.

Huang J, Lesser CF, Lory S.

Nature. 2008 Nov 6;456(7218):112-5. doi: 10.1038/nature07355. Epub 2008 Oct 1.

10.

The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization.

Prota AE, Danel F, Bachmann F, Bargsten K, Buey RM, Pohlmann J, Reinelt S, Lane H, Steinmetz MO.

J Mol Biol. 2014 Apr 17;426(8):1848-60. doi: 10.1016/j.jmb.2014.02.005. Epub 2014 Feb 11.

PMID:
24530796
11.

The C terminus of tubulin, a versatile partner for cationic molecules: binding of Tau, polyamines, and calcium.

Lefèvre J, Chernov KG, Joshi V, Delga S, Toma F, Pastré D, Curmi PA, Savarin P.

J Biol Chem. 2011 Jan 28;286(4):3065-78. doi: 10.1074/jbc.M110.144089. Epub 2010 Nov 9.

12.

Structural characterization of a novel Chlamydia pneumoniae type III secretion-associated protein, Cpn0803.

Stone CB, Sugiman-Marangos S, Bulir DC, Clayden RC, Leighton TL, Slootstra JW, Junop MS, Mahony JB.

PLoS One. 2012;7(1):e30220. doi: 10.1371/journal.pone.0030220. Epub 2012 Jan 17.

13.

Chlamydia pneumoniae CopD translocator protein plays a critical role in type III secretion (T3S) and infection.

Bulir DC, Waltho DA, Stone CB, Mwawasi KA, Nelson JC, Mahony JB.

PLoS One. 2014 Jun 24;9(6):e99315. doi: 10.1371/journal.pone.0099315. eCollection 2014.

14.

The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin.

Nawrotek A, Knossow M, Gigant B.

J Mol Biol. 2011 Sep 9;412(1):35-42. doi: 10.1016/j.jmb.2011.07.029. Epub 2011 Jul 23.

PMID:
21787788
15.

Comparative genomes of Chlamydia pneumoniae and C. trachomatis.

Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS.

Nat Genet. 1999 Apr;21(4):385-9.

PMID:
10192388
16.

Prion protein region 23-32 interacts with tubulin and inhibits microtubule assembly.

Osiecka KM, Nieznanska H, Skowronek KJ, Karolczak J, Schneider G, Nieznanski K.

Proteins. 2009 Nov 1;77(2):279-96. doi: 10.1002/prot.22435.

PMID:
19422054
17.

Identification of a new microtubule-interacting protein Mip-90.

González M, Cambiazo V, Maccioni RB.

Eur J Cell Biol. 1995 Jun;67(2):158-69.

PMID:
7664757
18.

Systematic identification of tubulin-interacting fragments of the microtubule-associated protein Tau leads to a highly efficient promoter of microtubule assembly.

Fauquant C, Redeker V, Landrieu I, Wieruszeski JM, Verdegem D, Laprévote O, Lippens G, Gigant B, Knossow M.

J Biol Chem. 2011 Sep 23;286(38):33358-68. doi: 10.1074/jbc.M111.223545. Epub 2011 Jul 12.

19.

Sites of tau important for aggregation populate {beta}-structure and bind to microtubules and polyanions.

Mukrasch MD, Biernat J, von Bergen M, Griesinger C, Mandelkow E, Zweckstetter M.

J Biol Chem. 2005 Jul 1;280(26):24978-86. Epub 2005 Apr 26.

20.

N-terminal stathmin-like peptides bind tubulin and impede microtubule assembly.

Clément MJ, Jourdain I, Lachkar S, Savarin P, Gigant B, Knossow M, Toma F, Sobel A, Curmi PA.

Biochemistry. 2005 Nov 8;44(44):14616-25.

PMID:
16262261

Supplemental Content

Support Center