Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

Dissection of the control of anion homeostasis by associative transcriptomics in Brassica napus.

Koprivova A, Harper AL, Trick M, Bancroft I, Kopriva S.

Plant Physiol. 2014 Sep;166(1):442-50. doi: 10.1104/pp.114.239947. Epub 2014 Jul 21.

2.

Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes.

Xu HM, Kong XD, Chen F, Huang JX, Lou XY, Zhao JY.

BMC Genomics. 2015 Oct 24;16:858. doi: 10.1186/s12864-015-2062-7.

3.

QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus.

Shi T, Li R, Zhao Z, Ding G, Long Y, Meng J, Xu F, Shi L.

PLoS One. 2013;8(1):e54559. doi: 10.1371/journal.pone.0054559. Epub 2013 Jan 28.

5.

Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus.

Obermeier C, Hosseini B, Friedt W, Snowdon R.

BMC Genomics. 2009 Jul 3;10:295. doi: 10.1186/1471-2164-10-295.

6.

Sequence-level comparative analysis of the Brassica napus genome around two stearoyl-ACP desaturase loci.

Cho K, O'Neill CM, Kwon SJ, Yang TJ, Smooker AM, Fraser F, Bancroft I.

Plant J. 2010 Feb;61(4):591-9. doi: 10.1111/j.1365-313X.2009.04084.x. Epub 2009 Nov 19.

7.

Associative transcriptomics study dissects the genetic architecture of seed glucosinolate content in Brassica napus.

Lu G, Harper AL, Trick M, Morgan C, Fraser F, O'Neill C, Bancroft I.

DNA Res. 2014 Dec;21(6):613-25. doi: 10.1093/dnares/dsu024. Epub 2014 Jul 15.

8.

Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus.

Wang G, Ding G, Li L, Cai H, Ye X, Zou J, Xu F.

Ann Bot. 2014 Sep;114(3):549-59. doi: 10.1093/aob/mcu135. Epub 2014 Jul 2.

9.

Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers.

Carlsson J, Lagercrantz U, Sundström J, Teixeira R, Wellmer F, Meyerowitz EM, Glimelius K.

Plant J. 2007 Feb;49(3):452-62. Epub 2007 Jan 1.

10.

Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed.

Auger B, Baron C, Lucas MO, Vautrin S, Bergès H, Chalhoub B, Fautrel A, Renard M, Nesi N.

Planta. 2009 Nov;230(6):1167-83. doi: 10.1007/s00425-009-1017-0. Epub 2009 Sep 17.

11.

Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species.

Cai G, Yang Q, Yang Q, Zhao Z, Chen H, Wu J, Fan C, Zhou Y.

BMC Genet. 2012 Dec 6;13:105. doi: 10.1186/1471-2156-13-105.

12.

Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus.

Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F.

Ann Bot. 2012 Mar;109(4):747-59. doi: 10.1093/aob/mcr323. Epub 2012 Jan 9.

13.

Homoeologous duplicated regions are involved in quantitative resistance of Brassica napus to stem canker.

Fopa Fomeju B, Falentin C, Lassalle G, Manzanares-Dauleux MJ, Delourme R.

BMC Genomics. 2014 Jun 19;15:498. doi: 10.1186/1471-2164-15-498.

14.

Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus.

Chen X, Truksa M, Snyder CL, El-Mezawy A, Shah S, Weselake RJ.

Plant Physiol. 2011 Feb;155(2):851-65. doi: 10.1104/pp.110.169482. Epub 2010 Dec 20.

15.

Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.).

Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T.

DNA Res. 2016 Feb;23(1):43-52. doi: 10.1093/dnares/dsv035. Epub 2015 Dec 10.

16.

Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies.

Ding G, Yang M, Hu Y, Liao Y, Shi L, Xu F, Meng J.

Ann Bot. 2010 Jun;105(7):1221-34. doi: 10.1093/aob/mcq050. Epub 2010 Mar 17.

17.

Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress.

Babula-Skowrońska D, Ludwików A, Cieśla A, Olejnik A, Cegielska-Taras T, Bartkowiak-Broda I, Sadowski J.

Plant Mol Biol. 2015 Jul;88(4-5):445-57. doi: 10.1007/s11103-015-0334-x. Epub 2015 Jun 10.

18.

Regional association analysis delineates a sequenced chromosome region influencing antinutritive seed meal compounds in oilseed rape.

Snowdon RJ, Wittkop B, Rezaidad A, Hasan M, Lipsa F, Stein A, Friedt W.

Genome. 2010 Nov;53(11):917-28. doi: 10.1139/G10-052.

PMID:
21076507
19.

Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level.

Cao JY, Xu YP, Zhao L, Li SS, Cai XZ.

Plant Mol Biol. 2016 Sep;92(1-2):39-55. doi: 10.1007/s11103-016-0494-3. Epub 2016 Jun 20.

PMID:
27325118
20.

Associative transcriptomics of traits in the polyploid crop species Brassica napus.

Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I.

Nat Biotechnol. 2012 Aug;30(8):798-802. No abstract available.

PMID:
22820317

Supplemental Content

Support Center