Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 242

1.

Contrasting soil fungal community responses to experimental nitrogen addition using the large subunit rRNA taxonomic marker and cellobiohydrolase I functional marker.

Mueller RC, Balasch MM, Kuske CR.

Mol Ecol. 2014 Sep;23(17):4406-17. doi: 10.1111/mec.12858. Epub 2014 Aug 7.

PMID:
25039479
2.

Soil fungal cellobiohydrolase I gene (cbhI) composition and expression in a loblolly pine plantation under conditions of elevated atmospheric CO2 and nitrogen fertilization.

Weber CF, Balasch MM, Gossage Z, Porras-Alfaro A, Kuske CR.

Appl Environ Microbiol. 2012 Jun;78(11):3950-7. doi: 10.1128/AEM.08018-11. Epub 2012 Mar 30.

3.

Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by PCR.

Edwards IP, Upchurch RA, Zak DR.

Appl Environ Microbiol. 2008 Jun;74(11):3481-9. doi: 10.1128/AEM.02893-07. Epub 2008 Apr 11.

4.

Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR.

Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R.

Mycologia. 2007 Mar-Apr;99(2):185-206.

PMID:
17682771
5.

Responses of soil cellulolytic fungal communities to elevated atmospheric CO₂ are complex and variable across five ecosystems.

Weber CF, Zak DR, Hungate BA, Jackson RB, Vilgalys R, Evans RD, Schadt CW, Megonigal JP, Kuske CR.

Environ Microbiol. 2011 Oct;13(10):2778-93. doi: 10.1111/j.1462-2920.2011.02548.x. Epub 2011 Sep 1.

6.

Nutrient enrichment increased species richness of leaf litter fungal assemblages in a tropical forest.

Kerekes J, Kaspari M, Stevenson B, Nilsson RH, Hartmann M, Amend A, Bruns TD.

Mol Ecol. 2013 May;22(10):2827-38. doi: 10.1111/mec.12259. Epub 2013 Apr 22.

PMID:
23601077
7.

Fungal community on decomposing leaf litter undergoes rapid successional changes.

Voříšková J, Baldrian P.

ISME J. 2013 Mar;7(3):477-86. doi: 10.1038/ismej.2012.116. Epub 2012 Oct 11.

8.

Ribosomal RNA gene detection and targeted culture of novel nitrogen-responsive fungal taxa from temperate pine forest soil.

Hesse CN, Torres-Cruz TJ, Tobias TB, Al-Matruk M, Porras-Alfaro A, Kuske CR.

Mycologia. 2016 Nov/Dec;108(6):1082-1090. doi: 10.3852/16-086.

PMID:
27621290
9.

Fruiting body and soil rDNA sampling detects complementary assemblage of Agaricomycotina (Basidiomycota, Fungi) in a hemlock-dominated forest plot in southern Ontario.

Porter TM, Skillman JE, Moncalvo JM.

Mol Ecol. 2008 Jul;17(13):3037-50. doi: 10.1111/j.1365-294X.2008.03813.x. Epub 2008 May 20.

PMID:
18494767
11.

Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem.

Lipson DA, Kuske CR, Gallegos-Graves LV, Oechel WC.

Glob Chang Biol. 2014 Aug;20(8):2555-65. doi: 10.1111/gcb.12609. Epub 2014 May 26.

PMID:
24753089
12.

Ascomycota members dominate fungal communities during straw residue decomposition in arable soil.

Ma A, Zhuang X, Wu J, Cui M, Lv D, Liu C, Zhuang G.

PLoS One. 2013 Jun 20;8(6):e66146. doi: 10.1371/journal.pone.0066146. Print 2013.

13.

Reverse transcription-PCR methods significantly impact richness and composition measures of expressed fungal cellobiohydrolase I genes in soil and litter.

Weber CF, Kuske CR.

J Microbiol Methods. 2011 Sep;86(3):344-50. doi: 10.1016/j.mimet.2011.06.011. Epub 2011 Jun 17.

PMID:
21704085
14.

Active and total microbial communities in forest soil are largely different and highly stratified during decomposition.

Baldrian P, Kolařík M, Stursová M, Kopecký J, Valášková V, Větrovský T, Zifčáková L, Snajdr J, Rídl J, Vlček C, Voříšková J.

ISME J. 2012 Feb;6(2):248-58. doi: 10.1038/ismej.2011.95. Epub 2011 Jul 21.

15.

454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity.

Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F.

New Phytol. 2009 Oct;184(2):449-56. doi: 10.1111/j.1469-8137.2009.03003.x. Epub 2009 Aug 22.

16.

Diversity and distribution of soil fungal communities in a semiarid grassland.

Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K, Sinsabaugh RL.

Mycologia. 2011 Jan-Feb;103(1):10-21. doi: 10.3852/09-297. Epub 2010 Jun 16.

PMID:
20943560
17.

Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest.

Edwards IP, Zak DR, Kellner H, Eisenlord SD, Pregitzer KS.

PLoS One. 2011;6(6):e20421. doi: 10.1371/journal.pone.0020421. Epub 2011 Jun 20.

18.

Fungal community analysis by large-scale sequencing of environmental samples.

O'Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R.

Appl Environ Microbiol. 2005 Sep;71(9):5544-50.

19.

Short-Term Transcriptional Response of Microbial Communities to Nitrogen Fertilization in a Pine Forest Soil.

Albright MBN, Johansen R, Lopez D, Gallegos-Graves V, Steven B, Kuske CR, Dunbar J.

Appl Environ Microbiol. 2018 Jul 17;84(15). pii: e00598-18. doi: 10.1128/AEM.00598-18. Print 2018 Aug 1.

20.

The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling.

Nemergut DR, Townsend AR, Sattin SR, Freeman KR, Fierer N, Neff JC, Bowman WD, Schadt CW, Weintraub MN, Schmidt SK.

Environ Microbiol. 2008 Nov;10(11):3093-105. doi: 10.1111/j.1462-2920.2008.01735.x. Epub 2008 Sep 1.

PMID:
18764871

Supplemental Content

Support Center