Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 181

1.

Immobilized lentivirus vector on chondroitin sulfate-hyaluronate acid-silk fibroin hybrid scaffold for tissue-engineered ligament-bone junction.

Sun L, Li H, Qu L, Zhu R, Fan X, Xue Y, Xie Z, Fan H.

Biomed Res Int. 2014;2014:816979. doi: 10.1155/2014/816979. Epub 2014 Jun 12.

2.

Development of a silk cable-reinforced gelatin/silk fibroin hybrid scaffold for ligament tissue engineering.

Fan H, Liu H, Wang Y, Toh SL, Goh JC.

Cell Transplant. 2008;17(12):1389-401.

PMID:
19364076
3.

TGF-β3 immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration.

Fan H, Tao H, Wu Y, Hu Y, Yan Y, Luo Z.

J Biomed Mater Res A. 2010 Dec 15;95(4):982-92. doi: 10.1002/jbm.a.32899. Epub 2010 Sep 24.

PMID:
20872747
4.

Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold.

Fan H, Liu H, Toh SL, Goh JC.

Biomaterials. 2008 Mar;29(8):1017-27. Epub 2007 Nov 26.

PMID:
18023476
5.

Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells.

Sawatjui N, Damrongrungruang T, Leeanansaksiri W, Jearanaikoon P, Hongeng S, Limpaiboon T.

Mater Sci Eng C Mater Biol Appl. 2015;52:90-6. doi: 10.1016/j.msec.2015.03.043. Epub 2015 Mar 24.

PMID:
25953544
6.

In vitro ligament-bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold.

He P, Ng KS, Toh SL, Goh JC.

Biomacromolecules. 2012 Sep 10;13(9):2692-703. doi: 10.1021/bm300651q. Epub 2012 Aug 10.

PMID:
22880933
7.

Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.

Luo Z, Jiang L, Xu Y, Li H, Xu W, Wu S, Wang Y, Tang Z, Lv Y, Yang L.

Biomaterials. 2015 Jun;52:463-75. doi: 10.1016/j.biomaterials.2015.01.001. Epub 2015 Mar 18.

PMID:
25818452
8.

Tissue-engineered mesh for pelvic floor reconstruction fabricated from silk fibroin scaffold with adipose-derived mesenchymal stem cells.

Li Q, Wang J, Liu H, Xie B, Wei L.

Cell Tissue Res. 2013 Nov;354(2):471-80. doi: 10.1007/s00441-013-1719-2. Epub 2013 Aug 31.

PMID:
23996203
9.

In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold.

Fan H, Liu H, Wong EJ, Toh SL, Goh JC.

Biomaterials. 2008 Aug;29(23):3324-37. doi: 10.1016/j.biomaterials.2008.04.012. Epub 2008 May 6.

PMID:
18462787
10.

A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration.

Chen K, Sahoo S, He P, Ng KS, Toh SL, Goh JC.

Tissue Eng Part A. 2012 Jul;18(13-14):1399-409. doi: 10.1089/ten.TEA.2011.0376. Epub 2012 Apr 23.

PMID:
22429111
11.

[PREPARATION AND PERFORMANCE RESEARCH OF SILK FIBROIN COLLAGEN BLEND SCAFFOLD].

Sun K, Nian Z, Xu C, Li R, Li H.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014 Jul;28(7):903-8. Chinese.

PMID:
26462359
12.

[Experimental study on gelatin-chondroitin sulfate-sodium hyaluronate tri-copolymer as novel scaffolds for cartilage tissue engineering].

Fan H, Hu Y, Li X, Lu R, Bai J, Wang J.

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2005 Jun;19(6):473-7. Chinese.

PMID:
16038467
13.

[Primary fabrication of a tissue-engineered mesh for pelvic floor reconstruction and research in vivo].

Li Q, Liu H, Wang J, Xie B, Wei L.

Zhonghua Yi Xue Za Zhi. 2014 Nov 11;94(41):3273-6. Chinese.

PMID:
25604234
14.

Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends.

Bhardwaj N, Kundu SC.

Biomaterials. 2012 Apr;33(10):2848-57. doi: 10.1016/j.biomaterials.2011.12.028. Epub 2012 Jan 17.

PMID:
22261099
15.

In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.

Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL.

Biomaterials. 2005 Dec;26(34):7082-94.

PMID:
15985292
16.

Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model.

Fan H, Liu H, Toh SL, Goh JC.

Biomaterials. 2009 Oct;30(28):4967-77. doi: 10.1016/j.biomaterials.2009.05.048. Epub 2009 Jun 18.

PMID:
19539988
17.

Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair.

Wang J, Yang Q, Cheng N, Tao X, Zhang Z, Sun X, Zhang Q.

Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:705-11. doi: 10.1016/j.msec.2015.12.097. Epub 2016 Jan 4.

PMID:
26838900
18.

Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold.

He P, Sahoo S, Ng KS, Chen K, Toh SL, Goh JC.

J Biomed Mater Res A. 2013 Feb;101(2):555-66. doi: 10.1002/jbm.a.34333. Epub 2012 Sep 4.

PMID:
22949167
19.

Aligned hybrid silk scaffold for enhanced differentiation of mesenchymal stem cells into ligament fibroblasts.

Teh TK, Toh SL, Goh JC.

Tissue Eng Part C Methods. 2011 Jun;17(6):687-703. doi: 10.1089/ten.tec.2010.0513. Epub 2011 Apr 18.

PMID:
21501090
20.

Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by long-term release of TGF-beta 3 complexed with chondroitin sulfate.

Park JS, Yang HJ, Woo DG, Yang HN, Na K, Park KH.

J Biomed Mater Res A. 2010 Feb;92(2):806-16. doi: 10.1002/jbm.a.32388.

PMID:
19280636

Supplemental Content

Support Center