Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA.

Reddy MA, Chen Z, Park JT, Wang M, Lanting L, Zhang Q, Bhatt K, Leung A, Wu X, Putta S, Sætrom P, Devaraj S, Natarajan R.

Diabetes. 2014 Dec;63(12):4249-61. doi: 10.2337/db14-0298.

2.

Aberrant expression of long noncoding RNAs in early diabetic retinopathy.

Yan B, Tao ZF, Li XM, Zhang H, Yao J, Jiang Q.

Invest Ophthalmol Vis Sci. 2014 Feb 18;55(2):941-51. doi: 10.1167/iovs.13-13221.

PMID:
24436191
3.

Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice.

Reddy MA, Villeneuve LM, Wang M, Lanting L, Natarajan R.

Circ Res. 2008 Sep 12;103(6):615-23. doi: 10.1161/CIRCRESAHA.108.175190. Retraction in: Circ Res. 2009 Sep 11;105(6):e9.

4.

Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization.

Cucak H, Grunnet LG, Rosendahl A.

J Leukoc Biol. 2014 Jan;95(1):149-60. doi: 10.1189/jlb.0213075.

5.

Diabetes during pregnancy influences Hofbauer cells, a subtype of placental macrophages, to acquire a pro-inflammatory phenotype.

Sisino G, Bouckenooghe T, Aurientis S, Fontaine P, Storme L, Vambergue A.

Biochim Biophys Acta. 2013 Dec;1832(12):1959-68. doi: 10.1016/j.bbadis.2013.07.009.

6.

Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice.

Mirza R, Koh TJ.

Cytokine. 2011 Nov;56(2):256-64. doi: 10.1016/j.cyto.2011.06.016.

PMID:
21803601
7.

Alternatively activated macrophages in types 1 and 2 diabetes.

Espinoza-Jiménez A, Peón AN, Terrazas LI.

Mediators Inflamm. 2012;2012:815953. doi: 10.1155/2012/815953. Review.

8.

Expression and regulation of long noncoding RNAs in TLR4 signaling in mouse macrophages.

Mao AP, Shen J, Zuo Z.

BMC Genomics. 2015 Feb 5;16:45. doi: 10.1186/s12864-015-1270-5.

9.

Experimental evidence for the use of CCR2 antagonists in the treatment of type 2 diabetes.

Sullivan TJ, Miao Z, Zhao BN, Ertl LS, Wang Y, Krasinski A, Walters MJ, Powers JP, Dairaghi DJ, Baumgart T, Seitz LC, Berahovich RD, Schall TJ, Jaen JC.

Metabolism. 2013 Nov;62(11):1623-32. doi: 10.1016/j.metabol.2013.06.008.

PMID:
23953944
10.

Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus.

Liu JY, Yao J, Li XM, Song YC, Wang XQ, Li YJ, Yan B, Jiang Q.

Cell Death Dis. 2014 Oct 30;5:e1506. doi: 10.1038/cddis.2014.466.

11.

Integrative analysis of the transcriptome profiles observed in type 1, type 2 and gestational diabetes mellitus reveals the role of inflammation.

Evangelista AF, Collares CV, Xavier DJ, Macedo C, Manoel-Caetano FS, Rassi DM, Foss-Freitas MC, Foss MC, Sakamoto-Hojo ET, Nguyen C, Puthier D, Passos GA, Donadi EA.

BMC Med Genomics. 2014 May 23;7:28. doi: 10.1186/1755-8794-7-28.

12.

PKCβ promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice.

Kong L, Shen X, Lin L, Leitges M, Rosario R, Zou YS, Yan SF.

Arterioscler Thromb Vasc Biol. 2013 Aug;33(8):1779-87. doi: 10.1161/ATVBAHA.112.301113.

13.

Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice.

Li SL, Reddy MA, Cai Q, Meng L, Yuan H, Lanting L, Natarajan R.

Diabetes. 2006 Sep;55(9):2611-9.

14.

lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA.

Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q, Jiang Q.

Circ Res. 2015 Mar 27;116(7):1143-56. doi: 10.1161/CIRCRESAHA.116.305510.

15.

Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice.

Terasaki M, Hiromura M, Mori Y, Kohashi K, Nagashima M, Kushima H, Watanabe T, Hirano T.

PLoS One. 2015 Nov 25;10(11):e0143396. doi: 10.1371/journal.pone.0143396.

16.

Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes.

Kodama K, Horikoshi M, Toda K, Yamada S, Hara K, Irie J, Sirota M, Morgan AA, Chen R, Ohtsu H, Maeda S, Kadowaki T, Butte AJ.

Proc Natl Acad Sci U S A. 2012 May 1;109(18):7049-54. doi: 10.1073/pnas.1114513109.

17.

Inflammatory stress in primary venous and aortic endothelial cells of type 1 diabetic mice.

Bucciarelli LG, Pollreisz A, Kebschull M, Ganda A, Kalea AZ, Hudson BI, Zou YS, Lalla E, Ramasamy R, Colombo PC, Schmidt AM, Yan SF.

Diab Vasc Dis Res. 2009 Oct;6(4):249-61. doi: 10.1177/1479164109338775.

PMID:
20368219
18.

Identification of novel long noncoding RNAs associated with TGF-β/Smad3-mediated renal inflammation and fibrosis by RNA sequencing.

Zhou Q, Chung AC, Huang XR, Dong Y, Yu X, Lan HY.

Am J Pathol. 2014 Feb;184(2):409-17. doi: 10.1016/j.ajpath.2013.10.007.

PMID:
24262754
19.

Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury.

Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH.

Kidney Int. 2004 Jan;65(1):116-28.

20.

Low-Dose IL-17 Therapy Prevents and Reverses Diabetic Nephropathy, Metabolic Syndrome, and Associated Organ Fibrosis.

Mohamed R, Jayakumar C, Chen F, Fulton D, Stepp D, Gansevoort RT, Ramesh G.

J Am Soc Nephrol. 2016 Mar;27(3):745-65. doi: 10.1681/ASN.2014111136.

PMID:
26334030
Items per page

Supplemental Content

Support Center