Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 150

1.

Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion.

Burgie ES, Wang T, Bussell AN, Walker JM, Li H, Vierstra RD.

J Biol Chem. 2014 Aug 29;289(35):24573-87. doi: 10.1074/jbc.M114.571661. Epub 2014 Jul 8.

2.

Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy.

Li H, Zhang J, Vierstra RD, Li H.

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10872-7. doi: 10.1073/pnas.1001908107. Epub 2010 Jun 1.

3.

Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome.

Burgie ES, Bussell AN, Walker JM, Dubiel K, Vierstra RD.

Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10179-84. doi: 10.1073/pnas.1403096111. Epub 2014 Jun 30.

4.

Crystal Structure of Deinococcus Phytochrome in the Photoactivated State Reveals a Cascade of Structural Rearrangements during Photoconversion.

Burgie ES, Zhang J, Vierstra RD.

Structure. 2016 Mar 1;24(3):448-57. doi: 10.1016/j.str.2016.01.001. Epub 2016 Feb 4.

5.

Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes.

Wagner JR, Zhang J, von Stetten D, Günther M, Murgida DH, Mroginski MA, Walker JM, Forest KT, Hildebrandt P, Vierstra RD.

J Biol Chem. 2008 May 2;283(18):12212-26. doi: 10.1074/jbc.M709355200. Epub 2008 Jan 10.

6.

On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome.

Takala H, Lehtivuori HK, Berntsson O, Hughes A, Nanekar R, Niebling S, Panman M, Henry L, Menzel A, Westenhoff S, Ihalainen JA.

J Biol Chem. 2018 May 25;293(21):8161-8172. doi: 10.1074/jbc.RA118.001794. Epub 2018 Apr 5.

7.

The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers.

Nagano S, Scheerer P, Zubow K, Michael N, Inomata K, Lamparter T, Krauß N.

J Biol Chem. 2016 Sep 23;291(39):20674-91. doi: 10.1074/jbc.M116.739136. Epub 2016 Jul 26.

8.

Dynamic structural changes underpin photoconversion of a blue/green cyanobacteriochrome between its dark and photoactivated states.

Cornilescu CC, Cornilescu G, Burgie ES, Markley JL, Ulijasz AT, Vierstra RD.

J Biol Chem. 2014 Jan 31;289(5):3055-65. doi: 10.1074/jbc.M113.531053. Epub 2013 Dec 11.

9.

Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism.

Otero LH, Klinke S, Rinaldi J, Velázquez-Escobar F, Mroginski MA, Fernández López M, Malamud F, Vojnov AA, Hildebrandt P, Goldbaum FA, Bonomi HR.

J Mol Biol. 2016 Sep 25;428(19):3702-20. doi: 10.1016/j.jmb.2016.04.012. Epub 2016 Apr 20.

PMID:
27107635
10.

Coordination of the biliverdin D-ring in bacteriophytochromes.

Lenngren N, Edlund P, Takala H, Stucki-Buchli B, Rumfeldt J, Peshev I, Häkkänen H, Westenhoff S, Ihalainen JA.

Phys Chem Chem Phys. 2018 Jul 11;20(27):18216-18225. doi: 10.1039/c8cp01696h.

PMID:
29938729
11.

Light-induced Changes in the Dimerization Interface of Bacteriophytochromes.

Takala H, Björling A, Linna M, Westenhoff S, Ihalainen JA.

J Biol Chem. 2015 Jun 26;290(26):16383-92. doi: 10.1074/jbc.M115.650127. Epub 2015 May 13.

12.

High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution.

Wagner JR, Zhang J, Brunzelle JS, Vierstra RD, Forest KT.

J Biol Chem. 2007 Apr 20;282(16):12298-309. Epub 2007 Feb 23.

13.

Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction.

Yang X, Kuk J, Moffat K.

Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14715-20. doi: 10.1073/pnas.0806718105. Epub 2008 Sep 17.

14.

The structure of a complete phytochrome sensory module in the Pr ground state.

Essen LO, Mailliet J, Hughes J.

Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14709-14. doi: 10.1073/pnas.0806477105. Epub 2008 Sep 17.

15.

Phytochromes: an atomic perspective on photoactivation and signaling.

Burgie ES, Vierstra RD.

Plant Cell. 2014 Dec;26(12):4568-83. doi: 10.1105/tpc.114.131623. Epub 2014 Dec 5. Review.

16.

Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors.

Karniol B, Wagner JR, Walker JM, Vierstra RD.

Biochem J. 2005 Nov 15;392(Pt 1):103-16.

17.

A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome.

Wagner JR, Brunzelle JS, Forest KT, Vierstra RD.

Nature. 2005 Nov 17;438(7066):325-31.

PMID:
16292304
18.

Light-Driven Domain Mechanics of a Minimal Phytochrome Photosensory Module Studied by EPR.

Assafa TE, Anders K, Linne U, Essen LO, Bordignon E.

Structure. 2018 Nov 6;26(11):1534-1545.e4. doi: 10.1016/j.str.2018.08.003. Epub 2018 Sep 20.

19.

Ultrafast red light activation of Synechocystis phytochrome Cph1 triggers major structural change to form the Pfr signalling-competent state.

Heyes DJ, Khara B, Sakuma M, Hardman SJ, O'Cualain R, Rigby SE, Scrutton NS.

PLoS One. 2012;7(12):e52418. doi: 10.1371/journal.pone.0052418. Epub 2012 Dec 26.

20.

Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein.

Auldridge ME, Satyshur KA, Anstrom DM, Forest KT.

J Biol Chem. 2012 Mar 2;287(10):7000-9. doi: 10.1074/jbc.M111.295121. Epub 2011 Dec 30.

Supplemental Content

Support Center