Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing.

Qi X, Li MW, Xie M, Liu X, Ni M, Shao G, Song C, Kay-Yuen Yim A, Tao Y, Wong FL, Isobe S, Wong CF, Wong KS, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, Zhou F, Phang TH, Liu X, Tong SW, Chan TF, Yiu SM, Tabata S, Wang J, Xu X, Lam HM.

Nat Commun. 2014 Jul 9;5:4340. doi: 10.1038/ncomms5340.

2.

Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean.

Tuyen DD, Lal SK, Xu DH.

Theor Appl Genet. 2010 Jul;121(2):229-36. doi: 10.1007/s00122-010-1304-y.

PMID:
20204319
3.
4.

Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean.

Patil G, Do T, Vuong TD, Valliyodan B, Lee JD, Chaudhary J, Shannon JG, Nguyen HT.

Sci Rep. 2016 Jan 19;6:19199. doi: 10.1038/srep19199.

5.

QTL mapping of domestication-related traits in soybean (Glycine max).

Liu B, Fujita T, Yan ZH, Sakamoto S, Xu D, Abe J.

Ann Bot. 2007 Nov;100(5):1027-38.

6.

Salinity tolerance in soybean is modulated by natural variation in GmSALT3.

Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L.

Plant J. 2014 Dec;80(6):937-50. doi: 10.1111/tpj.12695.

7.

Recent developments of genomic research in soybean.

Chan C, Qi X, Li MW, Wong FL, Lam HM.

J Genet Genomics. 2012 Jul 20;39(7):317-24. doi: 10.1016/j.jgg.2012.02.002. Review.

PMID:
22835978
8.

Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing.

Li YH, Zhao SC, Ma JX, Li D, Yan L, Li J, Qi XT, Guo XS, Zhang L, He WM, Chang RZ, Liang QS, Guo Y, Ye C, Wang XB, Tao Y, Guan RX, Wang JY, Liu YL, Jin LG, Zhang XQ, Liu ZX, Zhang LJ, Chen J, Wang KJ, Nielsen R, Li RQ, Chen PY, Li WB, Reif JC, Purugganan M, Wang J, Zhang MC, Wang J, Qiu LJ.

BMC Genomics. 2013 Aug 28;14:579. doi: 10.1186/1471-2164-14-579.

9.

Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean.

Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee SH, Wang W, Tian Z.

Nat Biotechnol. 2015 Apr;33(4):408-14. doi: 10.1038/nbt.3096. Erratum in: Nat Biotechnol. 2016 Apr;34(4):441.

PMID:
25643055
10.

Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage.

Zhang WJ, Niu Y, Bu SH, Li M, Feng JY, Zhang J, Yang SX, Odinga MM, Wei SP, Liu XF, Zhang YM.

PLoS One. 2014 Jan 8;9(1):e84750. doi: 10.1371/journal.pone.0084750.

11.

Uncovering the salt response of soybean by unraveling its wild and cultivated functional genomes using tag sequencing.

Ali Z, Zhang DY, Xu ZL, Xu L, Yi JX, He XL, Huang YH, Liu XQ, Khan AA, Trethowan RM, Ma HX.

PLoS One. 2012;7(11):e48819. doi: 10.1371/journal.pone.0048819.

12.

Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress.

Belamkar V, Weeks NT, Bharti AK, Farmer AD, Graham MA, Cannon SB.

BMC Genomics. 2014 Nov 3;15:950. doi: 10.1186/1471-2164-15-950.

13.

A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars.

Lee GJ, Carter TE Jr, Villagarcia MR, Li Z, Zhou X, Gibbs MO, Boerma HR.

Theor Appl Genet. 2004 Nov;109(8):1610-9. Erratum in: Theor Appl Genet. 2005 Feb;110(4):787.

PMID:
15365627
14.

Identification of QTL for increased fibrous roots in soybean.

Abdel-Haleem H, Lee GJ, Boerma RH.

Theor Appl Genet. 2011 Mar;122(5):935-46. doi: 10.1007/s00122-010-1500-9.

PMID:
21165732
15.

Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress.

Zhang D, Zhang H, Chu S, Li H, Chi Y, Triebwasser-Freese D, Lv H, Yu D.

Plant Mol Biol. 2017 Jan;93(1-2):137-150. doi: 10.1007/s11103-016-0552-x.

PMID:
27815671
16.

SNP discovery by high-throughput sequencing in soybean.

Wu X, Ren C, Joshi T, Vuong T, Xu D, Nguyen HT.

BMC Genomics. 2010 Aug 11;11:469. doi: 10.1186/1471-2164-11-469.

17.

Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean.

Sonah H, O'Donoughue L, Cober E, Rajcan I, Belzile F.

Plant Biotechnol J. 2015 Feb;13(2):211-21. doi: 10.1111/pbi.12249.

18.

Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.

Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R, Noe J, Li Z, Finnerty S, Pathan SM, Shannon JG, Nguyen HT.

Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13469-74. doi: 10.1073/pnas.1222368110.

19.

Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants.

Chen H, He H, Yu D.

Physiol Plant. 2011 Jan;141(1):11-8. doi: 10.1111/j.1399-3054.2010.01412.x.

PMID:
20875056
20.

Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea.

Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK.

DNA Res. 2015 Jun;22(3):193-203. doi: 10.1093/dnares/dsv004.

Items per page

Supplemental Content

Support Center