Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 281

1.

Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe³⁺ ions.

Makwana BA, Vyas DJ, Bhatt KD, Jain VK, Agrawal YK.

Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jan 5;134:73-80. doi: 10.1016/j.saa.2014.05.044. Epub 2014 Jun 10.

PMID:
25004898
2.
3.

Facile method for the synthesis of silver nanoparticles using 3-hydrazino-isatin derivatives in aqueous methanol and their antibacterial activity.

El-Faham A, Elzatahry AA, Al-Othman ZA, Elsayed EA.

Int J Nanomedicine. 2014 Mar 5;9:1167-74. doi: 10.2147/IJN.S58571. eCollection 2014.

4.

Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions.

Bhatt KD, Vyas DJ, Makwana BA, Darjee SM, Jain VK.

Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:94-100. doi: 10.1016/j.saa.2013.10.076. Epub 2013 Oct 27.

PMID:
24231744
5.

Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron(III), antibacterial and antioxidant activity.

Kumar V, Mohan S, Singh DK, Verma DK, Singh VK, Hasan SH.

Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:1004-1019. doi: 10.1016/j.msec.2016.11.013. Epub 2016 Nov 8.

PMID:
27987654
6.

Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.

Rastogi L, Sashidhar RB, Karunasagar D, Arunachalam J.

Talanta. 2014 Jan;118:111-7. doi: 10.1016/j.talanta.2013.10.012. Epub 2013 Oct 11.

PMID:
24274277
7.

Enhanced formation of silver nanoparticles in Ag+-NOM-iron(II, III) systems and antibacterial activity studies.

Adegboyega NF, Sharma VK, Siskova KM, Vecerova R, Kolar M, Zbořil R, Gardea-Torresdey JL.

Environ Sci Technol. 2014 Mar 18;48(6):3228-35. doi: 10.1021/es405641r. Epub 2014 Feb 26.

PMID:
24524189
8.

Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens.

Velmurugan P, Anbalagan K, Manosathyadevan M, Lee KJ, Cho M, Lee SM, Park JH, Oh SG, Bang KS, Oh BT.

Bioprocess Biosyst Eng. 2014 Oct;37(10):1935-43. doi: 10.1007/s00449-014-1169-6. Epub 2014 Mar 26.

PMID:
24668029
9.

Hybrid nanofibrous yarns based on N-carboxyethylchitosan and silver nanoparticles with antibacterial activity prepared by self-bundling electrospinning.

Penchev H, Paneva D, Manolova N, Rashkov I.

Carbohydr Res. 2010 Nov 2;345(16):2374-80. doi: 10.1016/j.carres.2010.08.014. Epub 2010 Aug 25.

PMID:
20851381
10.

Silver and gold nanoparticles for sensor and antibacterial applications.

Bindhu MR, Umadevi M.

Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jul 15;128:37-45. doi: 10.1016/j.saa.2014.02.119. Epub 2014 Mar 12.

PMID:
24657466
11.

A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications.

Annadhasan M, SankarBabu VR, Naresh R, Umamaheswari K, Rajendiran N.

Colloids Surf B Biointerfaces. 2012 Aug 1;96:14-21. doi: 10.1016/j.colsurfb.2012.03.009. Epub 2012 Apr 8.

PMID:
22537720
12.

Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus. Linn. G. Donn and its anti microbial activity.

Kotakadi VS, Rao YS, Gaddam SA, Prasad TN, Reddy AV, Gopal DV.

Colloids Surf B Biointerfaces. 2013 May 1;105:194-8. doi: 10.1016/j.colsurfb.2013.01.003. Epub 2013 Jan 7.

PMID:
23376746
13.

Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity.

Velmurugan P, Iydroose M, Mohideen MH, Mohan TS, Cho M, Oh BT.

Bioprocess Biosyst Eng. 2014 Aug;37(8):1527-34. doi: 10.1007/s00449-014-1124-6. Epub 2014 Feb 26.

PMID:
24569955
14.

Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria.

Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R.

Nanomedicine. 2010 Feb;6(1):103-9. doi: 10.1016/j.nano.2009.04.006. Epub 2009 May 15.

PMID:
19447203
15.

Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus.

Sunkar S, Nachiyar CV.

Asian Pac J Trop Biomed. 2012 Dec;2(12):953-9. doi: 10.1016/S2221-1691(13)60006-4.

16.

Evaluation of antibacterial efficacy of phyto fabricated silver nanoparticles using Mukia scabrella (Musumusukkai) against drug resistance nosocomial gram negative bacterial pathogens.

Prabakar K, Sivalingam P, Mohamed Rabeek SI, Muthuselvam M, Devarajan N, Arjunan A, Karthick R, Suresh MM, Wembonyama JP.

Colloids Surf B Biointerfaces. 2013 Apr 1;104:282-8. doi: 10.1016/j.colsurfb.2012.11.041. Epub 2012 Dec 20.

PMID:
23334182
17.

Enhanced stability and antibacterial efficacy of a traditional Chinese medicine-mediated silver nanoparticle delivery system.

Sun W, Qu D, Ma Y, Chen Y, Liu C, Zhou J.

Int J Nanomedicine. 2014 Nov 26;9:5491-502. doi: 10.2147/IJN.S71670. eCollection 2014.

18.

Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging.

Cao H, Chen Z, Zheng H, Huang Y.

Biosens Bioelectron. 2014 Dec 15;62:189-95. doi: 10.1016/j.bios.2014.06.049. Epub 2014 Jun 27.

PMID:
24999996
19.

Evaluation of the antibacterial activity of Ag/Fe3O4 nanocomposites synthesized using starch.

Ghaseminezhad SM, Shojaosadati SA.

Carbohydr Polym. 2016 Jun 25;144:454-63. doi: 10.1016/j.carbpol.2016.03.007. Epub 2016 Mar 5.

PMID:
27083838
20.

Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application.

Thomas V, Yallapu MM, Sreedhar B, Bajpai SK.

J Biomater Sci Polym Ed. 2009;20(14):2129-44. doi: 10.1163/156856209X410102.

PMID:
19874682

Supplemental Content

Support Center