Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Responses and adaptations of intervertebral disc cells to microenvironmental stress: a possible central role of autophagy in the adaptive mechanism.

Jiang L, Yuan F, Yin X, Dong J.

Connect Tissue Res. 2014 Oct-Dec;55(5-6):311-21. doi: 10.3109/03008207.2014.942419. Epub 2014 Jul 25. Review.

PMID:
25000273
2.

Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress.

Jiang LB, Cao L, Yin XF, Yasen M, Yishake M, Dong J, Li XL.

Cell Cycle. 2015;14(6):867-79. doi: 10.1080/15384101.2015.1004946.

3.

Effects of aging and degeneration on the human intervertebral disc during the diurnal cycle: a finite element study.

Massey CJ, van Donkelaar CC, Vresilovic E, Zavaliangos A, Marcolongo M.

J Orthop Res. 2012 Jan;30(1):122-8. doi: 10.1002/jor.21475. Epub 2011 Jun 27.

4.

The responses of autophagy and apoptosis to oxidative stress in nucleus pulposus cells: implications for disc degeneration.

Chen JW, Ni BB, Li B, Yang YH, Jiang SD, Jiang LS.

Cell Physiol Biochem. 2014;34(4):1175-89. doi: 10.1159/000366330. Epub 2014 Sep 22.

5.

Molecular mechanisms of cell death in intervertebral disc degeneration (Review).

Zhang F, Zhao X, Shen H, Zhang C.

Int J Mol Med. 2016 Jun;37(6):1439-48. doi: 10.3892/ijmm.2016.2573. Epub 2016 Apr 21. Review.

6.

Targeting the extracellular matrix: matricellular proteins regulate cell-extracellular matrix communication within distinct niches of the intervertebral disc.

Bedore J, Leask A, Séguin CA.

Matrix Biol. 2014 Jul;37:124-30. doi: 10.1016/j.matbio.2014.05.005. Epub 2014 May 27. Review.

7.

Autophagy Is a Protective Response to the Oxidative Damage to Endplate Chondrocytes in Intervertebral Disc: Implications for the Treatment of Degenerative Lumbar Disc.

Chen K, Lv X, Li W, Yu F, Lin J, Ma J, Xiao D.

Oxid Med Cell Longev. 2017;2017:4041768. doi: 10.1155/2017/4041768. Epub 2017 Feb 22.

8.

Early pattern of degenerative changes in individual components of intervertebral discs in stressed and nonstressed segments of lumbar spine: an in vivo magnetic resonance imaging study.

Sharma A, Lancaster S, Bagade S, Hildebolt C.

Spine (Phila Pa 1976). 2014 Jun 1;39(13):1084-90. doi: 10.1097/BRS.0000000000000265.

PMID:
24503691
9.

Apoptosis, senescence, and autophagy in rat nucleus pulposus cells: Implications for diabetic intervertebral disc degeneration.

Jiang L, Zhang X, Zheng X, Ru A, Ni X, Wu Y, Tian N, Huang Y, Xue E, Wang X, Xu H.

J Orthop Res. 2013 May;31(5):692-702. doi: 10.1002/jor.22289. Epub 2012 Dec 13.

10.

Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age.

Dolan P, Luo J, Pollintine P, Landham PR, Stefanakis M, Adams MA.

Spine (Phila Pa 1976). 2013 Aug 1;38(17):1473-81. doi: 10.1097/BRS.0b013e318290f3cc.

PMID:
23486408
11.

Degeneration and regeneration of the intervertebral disc: lessons from development.

Smith LJ, Nerurkar NL, Choi KS, Harfe BD, Elliott DM.

Dis Model Mech. 2011 Jan;4(1):31-41. doi: 10.1242/dmm.006403. Epub 2010 Dec 1. Review.

12.

Expression of acid-sensing ion channel 3 (ASIC3) in nucleus pulposus cells of the intervertebral disc is regulated by p75NTR and ERK signaling.

Uchiyama Y, Cheng CC, Danielson KG, Mochida J, Albert TJ, Shapiro IM, Risbud MV.

J Bone Miner Res. 2007 Dec;22(12):1996-2006.

13.

Large residual strains are present in the intervertebral disc annulus fibrosus in the unloaded state.

Michalek AJ, Gardner-Morse MG, Iatridis JC.

J Biomech. 2012 Apr 30;45(7):1227-31. doi: 10.1016/j.jbiomech.2012.01.042. Epub 2012 Feb 17.

14.

Diversity of intervertebral disc cells: phenotype and function.

Pattappa G, Li Z, Peroglio M, Wismer N, Alini M, Grad S.

J Anat. 2012 Dec;221(6):480-96. doi: 10.1111/j.1469-7580.2012.01521.x. Epub 2012 Jun 11. Review.

15.

Advancing the cellular and molecular therapy for intervertebral disc disease.

Sakai D, Grad S.

Adv Drug Deliv Rev. 2015 Apr;84:159-71. doi: 10.1016/j.addr.2014.06.009. Epub 2014 Jun 30. Review.

PMID:
24993611
16.

Increased periostin gene expression in degenerative intervertebral disc cells.

Tsai TT, Lai PL, Liao JC, Fu TS, Niu CC, Chen LH, Lee MS, Chen WJ, Fang HC, Ho NY, Pang JH.

Spine J. 2013 Mar;13(3):289-98. doi: 10.1016/j.spinee.2013.01.040. Epub 2013 Feb 27.

PMID:
23453657
17.

[Finite element analysis on stress change of the lumbar disc degeneration].

Yan JZ, Wu ZH, Wang XS, Xing ZJ, Zhao Y, Zhang JG, Wang YP, Qiu GX.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2009 Aug;31(4):464-7. Chinese.

18.

Modeling the role of IGF-1 on extracellular matrix biosynthesis and cellularity in intervertebral disc.

Travascio F, Elmasry S, Asfour S.

J Biomech. 2014 Jul 18;47(10):2269-76. doi: 10.1016/j.jbiomech.2014.04.046. Epub 2014 May 9.

PMID:
24856835
19.

Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc.

Malandrino A, Noailly J, Lacroix D.

J Biomech. 2014 Apr 11;47(6):1520-5. doi: 10.1016/j.jbiomech.2014.02.004. Epub 2014 Feb 15.

PMID:
24612720
20.

Interference in the endplate nutritional pathway causes intervertebral disc degeneration in an immature porcine model.

Kang R, Li H, Ringgaard S, Rickers K, Sun H, Chen M, Xie L, Bünger C.

Int Orthop. 2014 May;38(5):1011-7. doi: 10.1007/s00264-014-2319-9. Epub 2014 Mar 22.

Supplemental Content

Support Center