Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Daily Feeding of Fructooligosaccharide or Glucomannan Delays Onset of Senescence in SAMP8 Mice.

Nakamura S, Kondo N, Yamaguchi Y, Hashiguchi M, Tanabe K, Ushiroda C, Kawahashi-Tokuhisa M, Yui K, Miyakoda M, Oku T.

Gastroenterol Res Pract. 2014;2014:303184. doi: 10.1155/2014/303184. Epub 2014 Jun 2.

2.

The senescence-accelerated mouse-prone 8 is not a suitable model for the investigation of cardiac inflammation and oxidative stress and their modulation by dietary phytochemicals.

Schiborr C, Schwamm D, Kocher A, Rimbach G, Eckert GP, Frank J.

Pharmacol Res. 2013 Aug;74:113-20. doi: 10.1016/j.phrs.2013.06.004. Epub 2013 Jun 17.

PMID:
23792082
3.

Cardiac oxidative stress and inflammation are similar in SAMP8 and SAMR1 mice and unaltered by curcumin and Ginkgo biloba extract intake.

Schiborr C, Eckert GP, Weissenberger J, Müller WE, Schwamm D, Grune T, Rimbach G, Frank J.

Curr Pharm Biotechnol. 2010 Dec;11(8):861-7.

PMID:
20874680
4.

Western-style diet modulates contractile responses to phenylephrine differently in mesenteric arteries from senescence-accelerated prone (SAMP8) and resistant (SAMR1) mice.

Jiménez-Altayó F, Onetti Y, Heras M, Dantas AP, Vila E.

Age (Dordr). 2013 Aug;35(4):1219-34. doi: 10.1007/s11357-012-9450-6. Epub 2012 Jul 10.

5.

Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice.

Gong Y, Liu L, Xie B, Liao Y, Yang E, Sun Z.

Behav Brain Res. 2008 Dec 1;194(1):100-7. doi: 10.1016/j.bbr.2008.06.029. Epub 2008 Jul 4.

PMID:
18652848
6.

The Japanese diet from 1975 delays senescence and prolongs life span in SAMP8 mice.

Yamamoto K, E S, Hatakeyama Y, Sakamoto Y, Honma T, Jibu Y, Kawakami Y, Tsuduki T.

Nutrition. 2016 Jan;32(1):122-8. doi: 10.1016/j.nut.2015.07.002. Epub 2015 Jul 26.

PMID:
26431631
7.

1'-Acetoxychavicol acetate ameliorates age-related spatial memory deterioration by increasing serum ketone body production as a complementary energy source for neuronal cells.

Kojima-Yuasa A, Yamamoto T, Yaku K, Hirota S, Takenaka S, Kawabe K, Matsui-Yuasa I.

Chem Biol Interact. 2016 Sep 25;257:101-9. doi: 10.1016/j.cbi.2016.07.031. Epub 2016 Jul 29.

PMID:
27481192
8.

Manipulation of caloric content but not diet composition, attenuates the deficit in learning and memory of senescence-accelerated mouse strain P8.

Komatsu T, Chiba T, Yamaza H, Yamashita K, Shimada A, Hoshiyama Y, Henmi T, Ohtani H, Higami Y, de Cabo R, Ingram DK, Shimokawa I.

Exp Gerontol. 2008 Apr;43(4):339-46. doi: 10.1016/j.exger.2008.01.008. Epub 2008 Feb 2.

PMID:
18316167
10.

Effect of Monascus-fermented products on learning and memory in the SAMP8 mice.

Ou HP, Wang MF, Yang SC, Yamamoto S, Wang CC.

J Nutr Sci Vitaminol (Tokyo). 2007 Jun;53(3):253-60.

11.

The Effects of LW-AFC on Intestinal Microbiome in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer's Disease.

Wang J, Ye F, Cheng X, Zhang X, Liu F, Liu G, Ni M, Qiao S, Zhou W, Zhang Y.

J Alzheimers Dis. 2016 Jun 18;53(3):907-19. doi: 10.3233/JAD-160138.

PMID:
27340848
12.

Neuroprotective effects of icariin on memory impairment and neurochemical deficits in senescence-accelerated mouse prone 8 (SAMP8) mice.

He XL, Zhou WQ, Bi MG, Du GH.

Brain Res. 2010 Jun 2;1334:73-83. doi: 10.1016/j.brainres.2010.03.084. Epub 2010 Apr 7.

PMID:
20380820
13.
14.

Western-type diet induces senescence, modifies vascular function in non-senescence mice and triggers adaptive mechanisms in senescent ones.

Onetti Y, Jiménez-Altayó F, Heras M, Vila E, Dantas AP.

Exp Gerontol. 2013 Dec;48(12):1410-9. doi: 10.1016/j.exger.2013.09.004. Epub 2013 Sep 19.

PMID:
24055796
15.

Melatonin improves inflammation processes in liver of senescence-accelerated prone male mice (SAMP8).

Cuesta S, Kireev R, Forman K, García C, Escames G, Ariznavarreta C, Vara E, Tresguerres JA.

Exp Gerontol. 2010 Dec;45(12):950-6. doi: 10.1016/j.exger.2010.08.016. Epub 2010 Sep 9.

PMID:
20817086
16.

Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8.

Eckert GP, Schiborr C, Hagl S, Abdel-Kader R, Müller WE, Rimbach G, Frank J.

Neurochem Int. 2013 Apr;62(5):595-602. doi: 10.1016/j.neuint.2013.02.014. Epub 2013 Feb 17.

PMID:
23422877
17.

Cholinesterase activity in brain of senescence-accelerated-resistant mouse SAMR1 and its variation in brain of senescence-accelerated-prone mouse SAMP8.

Fernández-Gómez FJ, Muñoz-Delgado E, Montenegro MF, Campoy FJ, Vidal CJ, Jordán J.

J Neurosci Res. 2010 Jan;88(1):155-66. doi: 10.1002/jnr.22177.

PMID:
19610099
18.

Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8.

Tha KK, Okuma Y, Miyazaki H, Murayama T, Uehara T, Hatakeyama R, Hayashi Y, Nomura Y.

Brain Res. 2000 Dec 1;885(1):25-31.

PMID:
11121526
19.

Neuroprotective effects of forsythiaside on learning and memory deficits in senescence-accelerated mouse prone (SAMP8) mice.

Wang HM, Wang LW, Liu XM, Li CL, Xu SP, Farooq AD.

Pharmacol Biochem Behav. 2013 Apr;105:134-41. doi: 10.1016/j.pbb.2012.12.016. Epub 2013 Jan 2.

PMID:
23290932

Supplemental Content

Support Center