Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 276

1.

Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination.

Hernández S, Cauda V, Chiodoni A, Dallorto S, Sacco A, Hidalgo D, Celasco E, Pirri CF.

ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12153-67. doi: 10.1021/am501379m. Epub 2014 Jul 15.

PMID:
24983821
2.

Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting.

Hernández S, Hidalgo D, Sacco A, Chiodoni A, Lamberti A, Cauda V, Tresso E, Saracco G.

Phys Chem Chem Phys. 2015 Mar 28;17(12):7775-86. doi: 10.1039/c4cp05857g.

PMID:
25715190
3.

Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.

Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y.

Nano Lett. 2011 Jul 13;11(7):3026-33. doi: 10.1021/nl201766h. Epub 2011 Jun 28.

PMID:
21710974
4.

Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting.

Yang JS, Liao WP, Wu JJ.

ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7425-31. doi: 10.1021/am401746b. Epub 2013 Jul 24.

PMID:
23844887
5.

ZnO-ZnGa2O4 core-shell nanowire array for stable photoelectrochemical water splitting.

Zhong M, Li Y, Yamada I, Delaunay JJ.

Nanoscale. 2012 Mar 7;4(5):1509-14. doi: 10.1039/c2nr11451h. Epub 2011 Dec 23.

PMID:
22200054
6.

Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting.

Miao J, Yang HB, Khoo SY, Liu B.

Nanoscale. 2013 Nov 21;5(22):11118-24. doi: 10.1039/c3nr03425a. Epub 2013 Sep 27.

PMID:
24077389
7.

Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes.

Yang W, Yu Y, Starr MB, Yin X, Li Z, Kvit A, Wang S, Zhao P, Wang X.

Nano Lett. 2015 Nov 11;15(11):7574-80. doi: 10.1021/acs.nanolett.5b03988. Epub 2015 Oct 23.

PMID:
26492362
8.

3D Branched nanowire photoelectrochemical electrodes for efficient solar water splitting.

Kargar A, Sun K, Jing Y, Choi C, Jeong H, Jung GY, Jin S, Wang D.

ACS Nano. 2013 Oct 22;7(10):9407-15. doi: 10.1021/nn404170y. Epub 2013 Sep 16.

PMID:
24040832
9.

Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation.

Wang G, Xiao X, Li W, Lin Z, Zhao Z, Chen C, Wang C, Li Y, Huang X, Miao L, Jiang C, Huang Y, Duan X.

Nano Lett. 2015 Jul 8;15(7):4692-8. doi: 10.1021/acs.nanolett.5b01547. Epub 2015 Jun 12.

PMID:
26052643
10.

In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting.

Wu M, Chen WJ, Shen YH, Huang FZ, Li CH, Li SK.

ACS Appl Mater Interfaces. 2014 Sep 10;6(17):15052-60. doi: 10.1021/am503044f. Epub 2014 Aug 21.

PMID:
25144940
11.

Epitaxial growth of ZnO Nanodisks with large exposed polar facets on nanowire arrays for promoting photoelectrochemical water splitting.

Chen H, Wei Z, Yan K, Bai Y, Zhu Z, Zhang T, Yang S.

Small. 2014 Nov;10(22):4760-9. doi: 10.1002/smll.201401298. Epub 2014 Jul 2.

PMID:
24990800
12.

Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion.

Xu M, Da P, Wu H, Zhao D, Zheng G.

Nano Lett. 2012 Mar 14;12(3):1503-8. doi: 10.1021/nl2042968. Epub 2012 Feb 28.

PMID:
22364360
13.

Polymer-Mediated Self-Assembly of TiO2@Cu2O Core-Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation.

Yuan W, Yuan J, Xie J, Li CM.

ACS Appl Mater Interfaces. 2016 Mar 9;8(9):6082-92. doi: 10.1021/acsami.6b00030. Epub 2016 Mar 1.

PMID:
26908094
14.
15.

Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.

Li X, Bassi PS, Boix PP, Fang Y, Wong LH.

ACS Appl Mater Interfaces. 2015 Aug 12;7(31):16960-6. doi: 10.1021/acsami.5b01394. Epub 2015 Jul 30.

PMID:
26192330
16.

Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes.

Wang F, Seo JH, Li Z, Kvit AV, Ma Z, Wang X.

ACS Appl Mater Interfaces. 2014 Jan 22;6(2):1288-93. doi: 10.1021/am405141s. Epub 2014 Jan 8.

PMID:
24383705
17.

Au@CdS Core-Shell Nanoparticles-Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splitting.

Guo CX, Xie J, Yang H, Li CM.

Adv Sci (Weinh). 2015 Jul 17;2(12):1500135. eCollection 2015 Dec.

18.

Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance.

Li Y, Wei X, Zhu B, Wang H, Tang Y, Sum TC, Chen X.

Nanoscale. 2016 Jun 7;8(21):11284-90. doi: 10.1039/c6nr02430k. Epub 2016 May 18.

PMID:
27189633
19.

Novel phosphorus doped carbon nitride modified TiO₂ nanotube arrays with improved photoelectrochemical performance.

Su J, Geng P, Li X, Zhao Q, Quan X, Chen G.

Nanoscale. 2015 Oct 21;7(39):16282-9. doi: 10.1039/c5nr04562b.

PMID:
26376767
20.

Core-shell photoanode developed by atomic layer deposition of Bi₂O₃ on Si nanowires for enhanced photoelectrochemical water splitting.

Weng B, Xu F, Xu J.

Nanotechnology. 2014 Nov 14;25(45):455402. doi: 10.1088/0957-4484/25/45/455402. Epub 2014 Oct 22.

PMID:
25338216

Supplemental Content

Support Center