Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Rag GTPases are cardioprotective by regulating lysosomal function.

Kim YC, Park HW, Sciarretta S, Mo JS, Jewell JL, Russell RC, Wu X, Sadoshima J, Guan KL.

Nat Commun. 2014 Jul 1;5:4241. doi: 10.1038/ncomms5241.

2.

Metabolism. Differential regulation of mTORC1 by leucine and glutamine.

Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL.

Science. 2015 Jan 9;347(6218):194-8. doi: 10.1126/science.1259472. Epub 2015 Jan 7.

3.

Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging.

Oshiro N, Rapley J, Avruch J.

J Biol Chem. 2014 Jan 31;289(5):2658-74. doi: 10.1074/jbc.M113.528505. Epub 2013 Dec 11.

4.

Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival.

Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H, Wolfson RL, Kirak O, Sabatini DD, Sabatini DM.

Nature. 2013 Jan 31;493(7434):679-83. doi: 10.1038/nature11745. Epub 2012 Dec 23.

5.

Rag GTPase in amino acid signaling.

Kim J, Kim E.

Amino Acids. 2016 Apr;48(4):915-28. doi: 10.1007/s00726-016-2171-x. Epub 2016 Jan 18. Review.

PMID:
26781224
6.

The ubiquitination of rag A GTPase by RNF152 negatively regulates mTORC1 activation.

Deng L, Jiang C, Chen L, Jin J, Wei J, Zhao L, Chen M, Pan W, Xu Y, Chu H, Wang X, Ge X, Li D, Liao L, Liu M, Li L, Wang P.

Mol Cell. 2015 Jun 4;58(5):804-18. doi: 10.1016/j.molcel.2015.03.033. Epub 2015 Apr 30.

7.

Disruption of the Rag-Ragulator Complex by c17orf59 Inhibits mTORC1.

Schweitzer LD, Comb WC, Bar-Peled L, Sabatini DM.

Cell Rep. 2015 Sep 1;12(9):1445-55. doi: 10.1016/j.celrep.2015.07.052. Epub 2015 Aug 20.

8.

Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling.

Peng M, Yin N, Li MO.

Cell. 2014 Sep 25;159(1):122-133. doi: 10.1016/j.cell.2014.08.038.

9.

Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases.

Petit CS, Roczniak-Ferguson A, Ferguson SM.

J Cell Biol. 2013 Sep 30;202(7):1107-22. doi: 10.1083/jcb.201307084.

10.

RagA, but not RagB, is essential for embryonic development and adult mice.

Efeyan A, Schweitzer LD, Bilate AM, Chang S, Kirak O, Lamming DW, Sabatini DM.

Dev Cell. 2014 May 12;29(3):321-9. doi: 10.1016/j.devcel.2014.03.017. Epub 2014 Apr 24.

11.

KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1.

Wolfson RL, Chantranupong L, Wyant GA, Gu X, Orozco JM, Shen K, Condon KJ, Petri S, Kedir J, Scaria SM, Abu-Remaileh M, Frankel WN, Sabatini DM.

Nature. 2017 Mar 16;543(7645):438-442. doi: 10.1038/nature21423. Epub 2017 Feb 15.

12.

A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1.

Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM.

Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044.

13.

SZT2 dictates GATOR control of mTORC1 signalling.

Peng M, Yin N, Li MO.

Nature. 2017 Mar 16;543(7645):433-437. doi: 10.1038/nature21378. Epub 2017 Feb 15.

14.

The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.

Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM.

Mol Cell. 2013 Nov 21;52(4):495-505. doi: 10.1016/j.molcel.2013.09.016. Epub 2013 Oct 3.

15.

Increased lysosomal biogenesis in activated microglia and exacerbated neuronal damage after traumatic brain injury in progranulin-deficient mice.

Tanaka Y, Matsuwaki T, Yamanouchi K, Nishihara M.

Neuroscience. 2013 Oct 10;250:8-19. doi: 10.1016/j.neuroscience.2013.06.049. Epub 2013 Jul 2.

PMID:
23830905
16.

Skp2-Mediated RagA Ubiquitination Elicits a Negative Feedback to Prevent Amino-Acid-Dependent mTORC1 Hyperactivation by Recruiting GATOR1.

Jin G, Lee SW, Zhang X, Cai Z, Gao Y, Chou PC, Rezaeian AH, Han F, Wang CY, Yao JC, Gong Z, Chan CH, Huang CY, Tsai FJ, Tsai CH, Tu SH, Wu CH, Sarbassov dos D, Ho YS, Lin HK.

Mol Cell. 2015 Jun 18;58(6):989-1000. doi: 10.1016/j.molcel.2015.05.010. Epub 2015 Jun 4.

17.

Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.

Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM.

Science. 2015 Jan 9;347(6218):188-94. doi: 10.1126/science.1257132. Epub 2015 Jan 7.

18.

Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.

Averous J, Lambert-Langlais S, Carraro V, Gourbeyre O, Parry L, B'Chir W, Muranishi Y, Jousse C, Bruhat A, Maurin AC, Proud CG, Fafournoux P.

Cell Signal. 2014 Sep;26(9):1918-27. doi: 10.1016/j.cellsig.2014.04.019. Epub 2014 May 2.

PMID:
24793303
19.

Key mediators of intracellular amino acids signaling to mTORC1 activation.

Duan Y, Li F, Tan K, Liu H, Li Y, Liu Y, Kong X, Tang Y, Wu G, Yin Y.

Amino Acids. 2015 May;47(5):857-67. doi: 10.1007/s00726-015-1937-x. Epub 2015 Feb 21. Review.

PMID:
25701492
20.

Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids.

Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM.

Cell. 2010 Apr 16;141(2):290-303. doi: 10.1016/j.cell.2010.02.024. Epub 2010 Apr 8.

Supplemental Content

Support Center