Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Investigation on baseline toxicity to rats based on aliphatic compounds and comparison with toxicity to fish: effect of exposure routes on toxicity.

He J, Fu L, Wang Y, Li JJ, Wang XH, Su LM, Sheng LX, Zhao YH.

Regul Toxicol Pharmacol. 2014 Oct;70(1):98-106. doi: 10.1016/j.yrtph.2014.06.019. Epub 2014 Jun 26.

PMID:
24973504
2.

Investigation on modes of toxic action to rats based on aliphatic and aromatic compounds and comparison with fish toxicity based on exposure routes.

He J, Li JJ, Wen Y, Tai HW, Yu Y, Qin WC, Su LM, Zhao YH.

Chemosphere. 2015 Jun;128:111-7. doi: 10.1016/j.chemosphere.2015.01.028. Epub 2015 Feb 12.

PMID:
25681569
3.

Comparison of Toxicities to Vibrio fischeri and Fish Based on Discrimination of Excess Toxicity from Baseline Level.

Wang XH, Yu Y, Huang T, Qin WC, Su LM, Zhao YH.

PLoS One. 2016 Feb 22;11(2):e0150028. doi: 10.1371/journal.pone.0150028. eCollection 2016.

4.

Discrimination of excess toxicity from narcotic effect: comparison of toxicity of class-based organic chemicals to Daphnia magna and Tetrahymena pyriformis.

Zhang X, Qin W, He J, Wen Y, Su L, Sheng L, Zhao Y.

Chemosphere. 2013 Sep;93(2):397-407. doi: 10.1016/j.chemosphere.2013.05.017. Epub 2013 Jun 17.

PMID:
23786811
5.

The discrimination of excess toxicity from baseline effect: effect of bioconcentration.

Su LM, Liu X, Wang Y, Li JJ, Wang XH, Sheng LX, Zhao YH.

Sci Total Environ. 2014 Jun 15;484:137-45. doi: 10.1016/j.scitotenv.2014.03.040. Epub 2014 Mar 31.

PMID:
24698800
6.

Comparison of toxicity of class-based organic chemicals to algae and fish based on discrimination of excess toxicity from baseline level.

Li JJ, Tai HW, Yu Y, Wen Y, Wang XH, Zhao YH.

Environ Toxicol Pharmacol. 2015 Jul;40(1):292-9. doi: 10.1016/j.etap.2015.06.003. Epub 2015 Jun 9.

PMID:
26186523
7.

Discrimination of excess toxicity from narcotic effect: influence of species sensitivity and bioconcentration on the classification of modes of action.

Li JJ, Wang XH, Wang Y, Wen Y, Qin WC, Su LM, Zhao YH.

Chemosphere. 2015 Feb;120:660-73. doi: 10.1016/j.chemosphere.2014.10.013. Epub 2014 Nov 1.

PMID:
25462311
8.

Effect of exposure routes on the relationships of lethal toxicity to rats from oral, intravenous, intraperitoneal and intramuscular routes.

Ning ZH, Long S, Zhou YY, Peng ZY, Sun YN, Chen SW, Su LM, Zhao YH.

Regul Toxicol Pharmacol. 2015 Nov;73(2):613-9. doi: 10.1016/j.yrtph.2015.09.008. Epub 2015 Sep 9.

PMID:
26361856
9.

The chemical exposure toxicity space (CETS) model: Displaying exposure time, aqueous and organic concentration, activity, and onset of toxicity.

Mackay D, Celsie AKD, Parnis JM, McCarty LS, Arnot JA, Powell DE.

Environ Toxicol Chem. 2017 May;36(5):1389-1396. doi: 10.1002/etc.3668. Epub 2016 Dec 30.

10.

Development of thresholds of excess toxicity for environmental species and their application to identification of modes of acute toxic action.

Li JJ, Zhang XJ, Yang Y, Huang T, Li C, Su L, Zhao YH, Cronin MTD.

Sci Total Environ. 2017 Nov 8;616-617:491-499. doi: 10.1016/j.scitotenv.2017.10.308. [Epub ahead of print]

PMID:
29127803
11.

Relationships between exposure and dose in aquatic toxicity tests for organic chemicals.

Mackay D, McCarty LS, Arnot JA.

Environ Toxicol Chem. 2014 Sep;33(9):2038-46. doi: 10.1002/etc.2649. Epub 2014 Jul 30.

PMID:
24889496
12.

Modelling acute oral mammalian toxicity. 1. Definition of a quantifiable baseline effect.

Koleva YK, Cronin MT, Madden JC, Schwöbel JA.

Toxicol In Vitro. 2011 Oct;25(7):1281-93. doi: 10.1016/j.tiv.2011.04.015. Epub 2011 Apr 29.

PMID:
21557997
13.

Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis.

Schultz TW, Cronin MT, Netzeva TI, Aptula AO.

Chem Res Toxicol. 2002 Dec;15(12):1602-9.

PMID:
12482243
14.

Baseline toxicity (narcosis) of organic chemicals determined by in vitro membrane potential measurements in energy-transducing membranes.

Escher BI, Eggen RI, Schreiber U, Schreiber Z, Vye E, Wisner B, Schwarzenbach RP.

Environ Sci Technol. 2002 May 1;36(9):1971-9.

PMID:
12026980
15.

Toxic ratio as an indicator of the intrinsic toxicity in the assessment of persistent, bioaccumulative, and toxic chemicals.

Maeder V, Escher BI, Scheringer M, Hungerbühler K.

Environ Sci Technol. 2004 Jul 1;38(13):3659-66.

PMID:
15296318
16.
17.

Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.

EFSA GMO Panel Working Group on Animal Feeding Trials.

Food Chem Toxicol. 2008 Mar;46 Suppl 1:S2-70. doi: 10.1016/j.fct.2008.02.008. Epub 2008 Feb 13. Review.

PMID:
18328408
18.

Evaluation of critical body residue QSARs for predicting organic chemical toxicity to aquatic organisms.

Barron MG, Anderson MJ, Lipton J, Dixon DG.

SAR QSAR Environ Res. 1997;6(1-2):47-62.

PMID:
9241865
19.

Triethylene glycol HO(CH2CH2O)3H.

Ballantyne B, Snellings WM.

J Appl Toxicol. 2007 May-Jun;27(3):291-9. Review.

PMID:
17299811
20.

A comparison of sensitivity of spirotox biotest with standard toxicity tests.

Nałecz-Jawecki G, Sawicki J.

Arch Environ Contam Toxicol. 2002 May;42(4):389-95.

PMID:
11994778

Supplemental Content

Support Center