Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Bioreducible cross-linked nanoshell enhances gene transfection of polycation/DNA polyplex in vivo.

Piao JG, Ding SG, Yang L, Hong CY, You YZ.

Biomacromolecules. 2014 Aug 11;15(8):2907-13. doi: 10.1021/bm500518u.

PMID:
24963863
2.

Stimuli-triggered growth and removal of a bioreducible nanoshell on nanoparticles.

Han LF, Chen QB, Hu ZT, Piao JG, Hong CY, Yan JJ, You YZ.

Macromol Rapid Commun. 2014 Mar;35(6):649-54. doi: 10.1002/marc.201300885.

PMID:
24497329
3.

Bioreducible polyether-based pDNA ternary polyplexes: balancing particle stability and transfection efficiency.

Lai TC, Kataoka K, Kwon GS.

Colloids Surf B Biointerfaces. 2012 Nov 1;99:27-37. doi: 10.1016/j.colsurfb.2011.09.026.

4.

Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression.

Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H, Kataoka K.

J Am Chem Soc. 2004 Mar 3;126(8):2355-61.

PMID:
14982439
5.

Bioreducible cross-linked nanoshell enhances gene transfection of polycation/DNA polyplex in vivo.

Piao JG, Yang L, Hong CY, You YZ.

J Control Release. 2015 Sep 10;213:e133. doi: 10.1016/j.jconrel.2015.05.224. No abstract available.

PMID:
27005086
6.

Discovery of metabolically stabilized electronegative polyacridine-PEG peptide DNA open polyplexes.

Fernandez CA, Baumhover NJ, Anderson K, Rice KG.

Bioconjug Chem. 2010 Apr 21;21(4):723-30. doi: 10.1021/bc900514s.

7.

PEGylated polyplex with optimized PEG shielding enhances gene introduction in lungs by minimizing inflammatory responses.

Uchida S, Itaka K, Chen Q, Osada K, Ishii T, Shibata MA, Harada-Shiba M, Kataoka K.

Mol Ther. 2012 Jun;20(6):1196-203. doi: 10.1038/mt.2012.20.

8.

Degradable PEG-folate coated poly(DMAEA-co-BA)phosphazene-based polyplexes exhibit receptor-specific gene expression.

Luten J, van Steenbergen MJ, Lok MC, de Graaff AM, van Nostrum CF, Talsma H, Hennink WE.

Eur J Pharm Sci. 2008 Mar 3;33(3):241-51. doi: 10.1016/j.ejps.2007.12.003.

PMID:
18207707
9.

Biodegradable poly(2-dimethylamino ethylamino)phosphazene for in vivo gene delivery to tumor cells. Effect of polymer molecular weight.

de Wolf HK, de Raad M, Snel C, van Steenbergen MJ, Fens MH, Storm G, Hennink WE.

Pharm Res. 2007 Aug;24(8):1572-80.

10.

PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery.

Qian Y, Zha Y, Feng B, Pang Z, Zhang B, Sun X, Ren J, Zhang C, Shao X, Zhang Q, Jiang X.

Biomaterials. 2013 Mar;34(8):2117-29. doi: 10.1016/j.biomaterials.2012.11.050.

PMID:
23245924
11.

Reversibly shielded DNA polyplexes based on bioreducible PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers mediate markedly enhanced nonviral gene transfection.

Zhu C, Zheng M, Meng F, Mickler FM, Ruthardt N, Zhu X, Zhong Z.

Biomacromolecules. 2012 Mar 12;13(3):769-78. doi: 10.1021/bm201693j.

PMID:
22277017
12.

The uptake mechanism of PEGylated DNA polyplexes by the liver influences gene expression.

Khargharia S, Baumhover NJ, Crowley ST, Duskey J, Rice KG.

Gene Ther. 2014 Dec;21(12):1021-8. doi: 10.1038/gt.2014.81.

PMID:
25253445
13.

Supramolecular control of polyplex dissociation and cell transfection: efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes.

Yamashita A, Kanda D, Katoono R, Yui N, Ooya T, Maruyama A, Akita H, Kogure K, Harashima H.

J Control Release. 2008 Oct 21;131(2):137-44. doi: 10.1016/j.jconrel.2008.07.011.

PMID:
18700157
14.
15.

Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties.

Zhong Z, Feijen J, Lok MC, Hennink WE, Christensen LV, Yockman JW, Kim YH, Kim SW.

Biomacromolecules. 2005 Nov-Dec;6(6):3440-8.

PMID:
16283777
16.

Combination of chondroitin sulfate and polyplex micelles from Poly(ethylene glycol)-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} block copolymer for prolonged in vivo gene transfection with reduced toxicity.

Uchida S, Itaka K, Chen Q, Osada K, Miyata K, Ishii T, Harada-Shiba M, Kataoka K.

J Control Release. 2011 Oct 30;155(2):296-302. doi: 10.1016/j.jconrel.2011.04.026.

PMID:
21571018
17.

Polyplexes based on cationic polymers with strong nucleic acid binding properties.

Varkouhi AK, Mountrichas G, Schiffelers RM, Lammers T, Storm G, Pispas S, Hennink WE.

Eur J Pharm Sci. 2012 Mar 12;45(4):459-66. doi: 10.1016/j.ejps.2011.09.002.

PMID:
21925599
18.

Polyplex formation between four-arm poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate) and plasmid DNA in gene delivery.

He E, Yue CY, Simeon F, Zhou LH, Too HP, Tam KC.

J Biomed Mater Res A. 2009 Dec;91(3):708-18. doi: 10.1002/jbm.a.32255.

PMID:
19048636
19.

Dual environment-responsive polyplex carriers for enhanced intracellular delivery of plasmid DNA.

Sanjoh M, Miyata K, Christie RJ, Ishii T, Maeda Y, Pittella F, Hiki S, Nishiyama N, Kataoka K.

Biomacromolecules. 2012 Nov 12;13(11):3641-9. doi: 10.1021/bm301095a.

PMID:
22994314
20.

PEG- and PDMAEG-graft-modified branched PEI as novel gene vector: synthesis, characterization and gene transfection.

Wen Y, Pan S, Luo X, Zhang W, Shen Y, Feng M.

J Biomater Sci Polym Ed. 2010;21(8-9):1103-26. doi: 10.1163/092050609X12459295750316.

PMID:
20507711
Items per page

Supplemental Content

Support Center