Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 240

1.

Wheat TaNPSN SNARE homologues are involved in vesicle-mediated resistance to stripe rust (Puccinia striiformis f. sp. tritici).

Wang X, Wang X, Deng L, Chang H, Dubcovsky J, Feng H, Han Q, Huang L, Kang Z.

J Exp Bot. 2014 Sep;65(17):4807-20. doi: 10.1093/jxb/eru241. Epub 2014 Jun 24.

2.

RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici.

Jiang Z, Ge S, Xing L, Han D, Kang Z, Zhang G, Wang X, Wang X, Chen P, Cao A.

J Exp Bot. 2013 Sep;64(12):3735-46. doi: 10.1093/jxb/ert206. Epub 2013 Jul 23.

3.

TaEIL1, a wheat homologue of AtEIN3, acts as a negative regulator in the wheat-stripe rust fungus interaction.

Duan X, Wang X, Fu Y, Tang C, Li X, Cheng Y, Feng H, Huang L, Kang Z.

Mol Plant Pathol. 2013 Sep;14(7):728-39. doi: 10.1111/mpp.12044. Epub 2013 Jun 3.

PMID:
23730729
4.

TaADF7, an actin-depolymerizing factor, contributes to wheat resistance against Puccinia striiformis f. sp. tritici.

Fu Y, Duan X, Tang C, Li X, Voegele RT, Wang X, Wei G, Kang Z.

Plant J. 2014 Apr;78(1):16-30. doi: 10.1111/tpj.12457. Epub 2014 Mar 12.

5.

TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici.

Feng H, Liu W, Zhang Q, Wang X, Wang X, Duan X, Li F, Huang L, Kang Z.

Plant Physiol Biochem. 2014 Mar;76:7-16. doi: 10.1016/j.plaphy.2013.12.015. Epub 2013 Dec 30.

PMID:
24448320
6.

Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis.

Wang X, Tang C, Huang X, Li F, Chen X, Zhang G, Sun Y, Han D, Kang Z.

J Exp Bot. 2012 Jul;63(12):4571-84. doi: 10.1093/jxb/ers140. Epub 2012 Jun 13.

PMID:
22696283
7.

Cloning and characterization of a wheat beta-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici.

Liu B, Xue X, Cui S, Zhang X, Han Q, Zhu L, Liang X, Wang X, Huang L, Chen X, Kang Z.

Mol Biol Rep. 2010 Feb;37(2):1045-52. doi: 10.1007/s11033-009-9823-9.

PMID:
19757158
8.

Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici.

Yang Y, Zhao J, Liu P, Xing H, Li C, Wei G, Kang Z.

PLoS One. 2013 Nov 29;8(11):e81756. doi: 10.1371/journal.pone.0081756. eCollection 2013.

9.

TaMDAR6 acts as a negative regulator of plant cell death and participates indirectly in stomatal regulation during the wheat stripe rust-fungus interaction.

Abou-Attia MA, Wang X, Nashaat Al-Attala M, Xu Q, Zhan G, Kang Z.

Physiol Plant. 2016 Mar;156(3):262-77. doi: 10.1111/ppl.12355. Epub 2015 Jul 14.

PMID:
26074061
10.

Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici.

Chen W, Wellings C, Chen X, Kang Z, Liu T.

Mol Plant Pathol. 2014 Jun;15(5):433-46. doi: 10.1111/mpp.12116. Review.

PMID:
24373199
11.

Transcriptome analysis of high-temperature adult-plant resistance conditioned by Yr39 during the wheat-Puccinia striiformis f. sp. tritici interaction.

Coram TE, Settles ML, Chen X.

Mol Plant Pathol. 2008 Jul;9(4):479-93. doi: 10.1111/j.1364-3703.2008.00476.x.

PMID:
18705862
12.

The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust.

Feng H, Duan X, Zhang Q, Li X, Wang B, Huang L, Wang X, Kang Z.

Mol Plant Pathol. 2014 Apr;15(3):284-96. doi: 10.1111/mpp.12089. Epub 2014 Feb 14.

PMID:
24128392
13.

Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust.

Feng H, Zhang Q, Wang Q, Wang X, Liu J, Li M, Huang L, Kang Z.

Plant Mol Biol. 2013 Nov;83(4-5):433-43. doi: 10.1007/s11103-013-0101-9. Epub 2013 Jul 18.

PMID:
23864359
14.

TaMCA4, a novel wheat metacaspase gene functions in programmed cell death induced by the fungal pathogen Puccinia striiformis f. sp. tritici.

Wang X, Wang X, Feng H, Tang C, Bai P, Wei G, Huang L, Kang Z.

Mol Plant Microbe Interact. 2012 Jun;25(6):755-64. doi: 10.1094/MPMI-11-11-0283-R.

15.

Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew.

Zhang H, Yang Y, Wang C, Liu M, Li H, Fu Y, Wang Y, Nie Y, Liu X, Ji W.

BMC Genomics. 2014 Oct 15;15:898. doi: 10.1186/1471-2164-15-898.

16.

A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses.

Al-Attala MN, Wang X, Abou-Attia MA, Duan X, Kang Z.

Plant Mol Biol. 2014 Mar;84(4-5):589-603. doi: 10.1007/s11103-013-0156-7. Epub 2013 Nov 29.

PMID:
24293360
17.

vsiRNAs derived from the miRNA-generating sites of pri-tae-miR159a based on the BSMV system play positive roles in the wheat response to Puccinia striiformis f. sp. tritici through the regulation of taMyb3 expression.

Feng H, Zhang Q, Li H, Wang X, Wang X, Duan X, Wang B, Kang Z.

Plant Physiol Biochem. 2013 Jul;68:90-5. doi: 10.1016/j.plaphy.2013.04.008. Epub 2013 Apr 23.

PMID:
23665893
18.

Wheat hypersensitive-induced reaction genes TaHIR1 and TaHIR3 are involved in response to stripe rust fungus infection and abiotic stresses.

Duan Y, Guo J, Shi X, Guan X, Liu F, Bai P, Huang L, Kang Z.

Plant Cell Rep. 2013 Feb;32(2):273-83. doi: 10.1007/s00299-012-1361-6. Epub 2012 Oct 31.

PMID:
23111787
19.

Down-regulation of a wheat alkaline/neutral invertase correlates with reduced host susceptibility to wheat stripe rust caused by Puccinia striiformis.

Liu J, Han L, Huai B, Zheng P, Chang Q, Guan T, Li D, Huang L, Kang Z.

J Exp Bot. 2015 Dec;66(22):7325-38. doi: 10.1093/jxb/erv428. Epub 2015 Sep 18.

PMID:
26386259
20.

Wheat zinc finger protein TaLSD1, a negative regulator of programmed cell death, is involved in wheat resistance against stripe rust fungus.

Guo J, Bai P, Yang Q, Liu F, Wang X, Huang L, Kang Z.

Plant Physiol Biochem. 2013 Oct;71:164-72. doi: 10.1016/j.plaphy.2013.07.009. Epub 2013 Jul 26.

PMID:
23933226

Supplemental Content

Support Center