Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 157

1.

Challenges in using ¹⁸F-fluorodeoxyglucose-PET-CT to define a biological radiotherapy boost volume in locally advanced pancreatic cancer.

Wilson JM, Mukherjee S, Chu KY, Brunner TB, Partridge M, Hawkins M.

Radiat Oncol. 2014 Jun 24;9:146. doi: 10.1186/1748-717X-9-146.

2.

Prognostic significance of volume-based FDG PET/CT parameters in patients with locally advanced pancreatic cancer treated with chemoradiation therapy.

Choi HJ, Lee JW, Kang B, Song SY, Lee JD, Lee JH.

Yonsei Med J. 2014 Nov;55(6):1498-506. doi: 10.3349/ymj.2014.55.6.1498.

3.

High FDG uptake areas on pre-radiotherapy PET/CT identify preferential sites of local relapse after chemoradiotherapy for locally advanced oesophageal cancer.

Calais J, Dubray B, Nkhali L, Thureau S, Lemarignier C, Modzelewski R, Gardin I, Di Fiore F, Michel P, Vera P.

Eur J Nucl Med Mol Imaging. 2015 May;42(6):858-67. doi: 10.1007/s00259-015-3004-y. Epub 2015 Feb 14.

PMID:
25680400
4.

Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: a prospective validation.

Aerts HJ, Bussink J, Oyen WJ, van Elmpt W, Folgering AM, Emans D, Velders M, Lambin P, De Ruysscher D.

Lung Cancer. 2012 Jan;75(1):73-6. doi: 10.1016/j.lungcan.2011.06.003. Epub 2011 Jul 22.

5.

Areas of high 18F-FDG uptake on preradiotherapy PET/CT identify preferential sites of local relapse after chemoradiotherapy for non-small cell lung cancer.

Calais J, Thureau S, Dubray B, Modzelewski R, Thiberville L, Gardin I, Vera P.

J Nucl Med. 2015 Feb;56(2):196-203. doi: 10.2967/jnumed.114.144253. Epub 2015 Jan 8.

6.

Predictive value of metabolic 18FDG-PET response on outcomes in patients with locally advanced pancreatic carcinoma treated with definitive concurrent chemoradiotherapy.

Topkan E, Parlak C, Kotek A, Yapar AF, Pehlivan B.

BMC Gastroenterol. 2011 Nov 10;11:123. doi: 10.1186/1471-230X-11-123.

8.

Spatial-temporal [¹⁸F]FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy.

Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S, D'Souza WD, Suntharalingam M, Lu W.

Int J Radiat Oncol Biol Phys. 2013 Apr 1;85(5):1375-82. doi: 10.1016/j.ijrobp.2012.10.017. Epub 2012 Dec 6.

9.

The role of qualitative and quantitative analysis of F18-FDG positron emission tomography in predicting pathologic response following chemoradiotherapy in patients with esophageal carcinoma.

Klayton T, Li T, Yu JQ, Keller L, Cheng J, Cohen SJ, Meropol NJ, Scott W, Xu-Welliver M, Konski A.

J Gastrointest Cancer. 2012 Dec;43(4):612-8. doi: 10.1007/s12029-012-9412-3.

PMID:
22777832
10.

FDG-PET/CT during concomitant chemo radiotherapy for esophageal cancer: Reducing target volumes to deliver higher radiotherapy doses.

Nkhali L, Thureau S, Edet-Sanson A, Doyeux K, Benyoucef A, Gardin I, Michel P, Vera P, Dubray B.

Acta Oncol. 2015 Jun;54(6):909-15. doi: 10.3109/0284186X.2014.973062. Epub 2014 Nov 24.

PMID:
25417733
11.

Sequential FDG-PET/CT reliably predicts response of locally advanced rectal cancer to neo-adjuvant chemo-radiation therapy.

Capirci C, Rampin L, Erba PA, Galeotti F, Crepaldi G, Banti E, Gava M, Fanti S, Mariani G, Muzzio PC, Rubello D.

Eur J Nucl Med Mol Imaging. 2007 Oct;34(10):1583-93. Epub 2007 May 15.

PMID:
17503039
12.

Ineffectiveness of ¹⁸F-fluorodeoxyglucose positron emission tomography in the evaluation of tumor response after completion of neoadjuvant chemoradiation in esophageal cancer.

Piessen G, Petyt G, Duhamel A, Mirabel X, Huglo D, Mariette C.

Ann Surg. 2013 Jul;258(1):66-76. doi: 10.1097/SLA.0b013e31828676c4.

PMID:
23470576
13.

Consequences of additional use of contrast-enhanced (18)F-FDG PET/CT in target volume delineation and dose distribution for pancreatic cancer.

Li XX, Liu NB, Zhu L, Yuan XK, Yang CW, Ren P, Gong LL, Zhao LJ, Xu WG, Wang P.

Br J Radiol. 2015 Jul;88(1051):20140590. doi: 10.1259/bjr.20140590. Epub 2015 May 5.

14.

Tumor volume as a potential imaging-based risk-stratification factor in trimodality therapy for locally advanced non-small cell lung cancer.

Kozak MM, Murphy JD, Schipper ML, Donington JS, Zhou L, Whyte RI, Shrager JB, Hoang CD, Bazan J, Maxim PG, Graves EE, Diehn M, Hara WY, Quon A, Le QT, Wakelee HA, Loo BW Jr.

J Thorac Oncol. 2011 May;6(5):920-6.

15.

FDG PET using SUVmax for preoperative T-staging of esophageal squamous cell carcinoma with and without neoadjuvant chemoradiotherapy.

Huang YC, Lu HI, Huang SC, Hsu CC, Chiu NT, Wang YM, Chiu YC, Li SH.

BMC Med Imaging. 2017 Jan 5;17(1):1. doi: 10.1186/s12880-016-0171-7.

16.

Correlation of (18)F-FDG avid volumes on pre-radiation therapy and post-radiation therapy FDG PET scans in recurrent lung cancer.

Shusharina N, Cho J, Sharp GC, Choi NC.

Int J Radiat Oncol Biol Phys. 2014 May 1;89(1):137-44. doi: 10.1016/j.ijrobp.2014.01.047.

17.

Predictive value of (18)FDG PET-CT for tumour response in patients with locally advanced rectal cancer treated by preoperative chemoradiotherapy.

Kim JW, Kim HC, Park JW, Park SC, Sohn DK, Choi HS, Kim DY, Chang HJ, Baek JY, Kim SY, Kim SK, Oh JH.

Int J Colorectal Dis. 2013 Sep;28(9):1217-24. doi: 10.1007/s00384-013-1657-1. Epub 2013 Feb 13.

PMID:
23404344
18.

Changes in cervical cancer FDG uptake during chemoradiation and association with response.

Kidd EA, Thomas M, Siegel BA, Dehdashti F, Grigsby PW.

Int J Radiat Oncol Biol Phys. 2013 Jan 1;85(1):116-22. doi: 10.1016/j.ijrobp.2012.02.056. Epub 2012 Apr 18.

19.

The role of dual-time combined 18-fluorodeoxyglucose positron emission tomography and computed tomography in the staging and restaging workup of locally advanced rectal cancer, treated with preoperative chemoradiation therapy and radical surgery.

Capirci C, Rubello D, Pasini F, Galeotti F, Bianchini E, Del Favero G, Panzavolta R, Crepaldi G, Rampin L, Facci E, Gava M, Banti E, Marano G.

Int J Radiat Oncol Biol Phys. 2009 Aug 1;74(5):1461-9. doi: 10.1016/j.ijrobp.2008.10.064. Epub 2009 May 4.

PMID:
19419820
20.

Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors: a feasibility study.

Clausen MM, Hansen AE, Af Rosenschold PM, Kjaer A, Kristensen AT, McEvoy FJ, Engelholm SA.

Radiat Oncol. 2013 Nov 7;8:262. doi: 10.1186/1748-717X-8-262.

Supplemental Content

Support Center