Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 353

1.

Effects of boron deficiency on major metabolites, key enzymes and gas exchange in leaves and roots of Citrus sinensis seedlings.

Lu YB, Yang LT, Li Y, Xu J, Liao TT, Chen YB, Chen LS.

Tree Physiol. 2014 Jun;34(6):608-18. doi: 10.1093/treephys/tpu047. Epub 2014 Jun 23.

PMID:
24957048
2.
3.

Magnesium-deficiency-induced alterations of gas exchange, major metabolites and key enzymes differ among roots, and lower and upper leaves of Citrus sinensis seedlings.

Li CP, Qi YP, Zhang J, Yang LT, Wang DH, Ye X, Lai NW, Tan LL, Lin D, Chen LS.

Tree Physiol. 2017 Nov 1;37(11):1564-1581. doi: 10.1093/treephys/tpx067.

PMID:
28633366
4.

Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. x Poncirus trifoliata (L.) Raf].

Martínez-Cuenca MR, Iglesias DJ, Talón M, Abadía J, López-Millán AF, Primo-Millo E, Legaz F.

Tree Physiol. 2013 Mar;33(3):320-9. doi: 10.1093/treephys/tpt011. Epub 2013 Mar 5.

PMID:
23462311
5.

Root release and metabolism of organic acids in tea plants in response to phosphorus supply.

Lin ZH, Chen LS, Chen RB, Zhang FZ, Jiang HX, Tang N, Smith BR.

J Plant Physiol. 2011 May 1;168(7):644-52. doi: 10.1016/j.jplph.2010.09.017. Epub 2011 Feb 18.

PMID:
21315475
6.

Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings.

Han S, Chen LS, Jiang HX, Smith BR, Yang LT, Xie CY.

J Plant Physiol. 2008 Sep 8;165(13):1331-41. doi: 10.1016/j.jplph.2007.11.002. Epub 2008 Jan 8.

PMID:
18191499
7.

iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency.

Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng H, Zhang HX, Chen LS.

J Proteomics. 2013 Nov 20;93:179-206. doi: 10.1016/j.jprot.2013.04.025. Epub 2013 Apr 28.

PMID:
23628855
8.

Proteomic analysis of Citrus sinensis roots and leaves in response to long-term magnesium-deficiency.

Peng HY, Qi YP, Lee J, Yang LT, Guo P, Jiang HX, Chen LS.

BMC Genomics. 2015 Mar 31;16:253. doi: 10.1186/s12864-015-1462-z.

9.
10.

Metabolic responses in iron deficient tomato plants.

López-Millán AF, Morales F, Gogorcena Y, Abadía A, Abadía J.

J Plant Physiol. 2009 Mar 1;166(4):375-84. doi: 10.1016/j.jplph.2008.06.011. Epub 2008 Aug 28.

PMID:
18760500
11.

Changes in organic acid metabolism differ between roots and leaves of Citrus grandis in response to phosphorus and aluminum interactions.

Chen LS, Tang N, Jiang HX, Yang LT, Li Q, Smith BR.

J Plant Physiol. 2009 Dec 15;166(18):2023-34. doi: 10.1016/j.jplph.2009.06.010. Epub 2009 Jul 10.

PMID:
19596484
12.

Root phosphoenolpyruvate carboxylase and NAD-malic enzymes activity increase the ammonium-assimilating capacity in tomato.

Setién I, Vega-Mas I, Celestino N, Calleja-Cervantes ME, González-Murua C, Estavillo JM, González-Moro MB.

J Plant Physiol. 2014 Mar 1;171(5):49-63. doi: 10.1016/j.jplph.2013.10.021. Epub 2013 Dec 22.

PMID:
24484958
13.

Differential expression of genes involved in alternative glycolytic pathways, phosphorus scavenging and recycling in response to aluminum and phosphorus interactions in Citrus roots.

Yang LT, Jiang HX, Qi YP, Chen LS.

Mol Biol Rep. 2012 May;39(5):6353-66. doi: 10.1007/s11033-012-1457-7. Epub 2012 Feb 4.

PMID:
22307782
14.

cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity.

Guo P, Qi YP, Yang LT, Ye X, Jiang HX, Huang JH, Chen LS.

BMC Plant Biol. 2014 Oct 28;14:284. doi: 10.1186/s12870-014-0284-5.

15.

Different metabolite profile and metabolic pathway with leaves and roots in response to boron deficiency at the initial stage of citrus rootstock growth.

Dong X, Liu G, Wu X, Lu X, Yan L, Muhammad R, Shah A, Wu L, Jiang C.

Plant Physiol Biochem. 2016 Nov;108:121-131. doi: 10.1016/j.plaphy.2016.07.007. Epub 2016 Jul 9.

PMID:
27428366
16.

An investigation of boron-toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics.

Sang W, Huang ZR, Qi YP, Yang LT, Guo P, Chen LS.

J Proteomics. 2015 Jun 18;123:128-46. doi: 10.1016/j.jprot.2015.04.007. Epub 2015 Apr 17.

PMID:
25892131
18.

Changes induced by Fe deficiency and Fe resupply in the organic acid metabolism of sugar beet (Beta vulgaris) leaves.

López-Millán AF, Morales F, Abadía A, Abadía J.

Physiol Plant. 2001 May;112(1):31-38.

PMID:
11319012
19.

Adaptation responses in C4 photosynthesis of maize under salinity.

Omoto E, Taniguchi M, Miyake H.

J Plant Physiol. 2012 Mar 15;169(5):469-77. doi: 10.1016/j.jplph.2011.11.009. Epub 2011 Dec 28.

PMID:
22209164
20.

Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants.

Borlotti A, Vigani G, Zocchi G.

BMC Plant Biol. 2012 Oct 11;12:189. doi: 10.1186/1471-2229-12-189.

Supplemental Content

Support Center