Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations.

Steinkellner G, Gruber CC, Pavkov-Keller T, Binter A, Steiner K, Winkler C, Lyskowski A, Schwamberger O, Oberer M, Schwab H, Faber K, Macheroux P, Gruber K.

Nat Commun. 2014 Jun 23;5:4150. doi: 10.1038/ncomms5150.

2.

X-ray-induced catalytic active-site reduction of a multicopper oxidase: structural insights into the proton-relay mechanism and O2-reduction states.

Serrano-Posada H, Centeno-Leija S, Rojas-Trejo SP, Rodríguez-Almazán C, Stojanoff V, Rudiño-Piñera E.

Acta Crystallogr D Biol Crystallogr. 2015 Dec 1;71(Pt 12):2396-411. doi: 10.1107/S1399004715018714. Epub 2015 Nov 26.

3.

The cytochrome ba3 oxygen reductase from Thermus thermophilus uses a single input channel for proton delivery to the active site and for proton pumping.

Chang HY, Hemp J, Chen Y, Fee JA, Gennis RB.

Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16169-73. doi: 10.1073/pnas.0905264106. Epub 2009 Sep 10.

4.

Crystal structure determination and mutagenesis analysis of the ene reductase NCR.

Reich S, Hoeffken HW, Rosche B, Nestl BM, Hauer B.

Chembiochem. 2012 Nov 5;13(16):2400-7. doi: 10.1002/cbic.201200404. Epub 2012 Oct 2.

PMID:
23033175
5.

Characterization of the nitric oxide reductase from Thermus thermophilus.

Schurig-Briccio LA, Venkatakrishnan P, Hemp J, Bricio C, Berenguer J, Gennis RB.

Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12613-8. doi: 10.1073/pnas.1301731110. Epub 2013 Jul 15.

6.

A third subunit in ancestral cytochrome c-dependent nitric oxide reductases.

Bricio C, Alvarez L, San Martin M, Schurig-Briccio LA, Gennis RB, Berenguer J.

Appl Environ Microbiol. 2014 Aug;80(16):4871-8. doi: 10.1128/AEM.00790-14. Epub 2014 Jun 6.

7.

Crystal structure of novel NADP-dependent 3-hydroxyisobutyrate dehydrogenase from Thermus thermophilus HB8.

Lokanath NK, Ohshima N, Takio K, Shiromizu I, Kuroishi C, Okazaki N, Kuramitsu S, Yokoyama S, Miyano M, Kunishima N.

J Mol Biol. 2005 Sep 30;352(4):905-17.

PMID:
16126223
9.

The structure of glycerol trinitrate reductase NerA from Agrobacterium radiobacter reveals the molecular reason for nitro- and ene-reductase activity in OYE homologues.

Oberdorfer G, Binter A, Wallner S, Durchschein K, Hall M, Faber K, Macheroux P, Gruber K.

Chembiochem. 2013 May 10;14(7):836-45. doi: 10.1002/cbic.201300136. Epub 2013 Apr 18.

10.

Structural insights into the stabilization of active, tetrameric DszC by its C-terminus.

Zhang L, Duan X, Zhou D, Dong Z, Ji K, Meng W, Li G, Li X, Yang H, Ma T, Rao Z.

Proteins. 2014 Oct;82(10):2733-43. doi: 10.1002/prot.24638. Epub 2014 Jul 17.

PMID:
24975806
11.

Crystal Structure of a Type IV Pilus Assembly ATPase: Insights into the Molecular Mechanism of PilB from Thermus thermophilus.

Mancl JM, Black WP, Robinson H, Yang Z, Schubot FD.

Structure. 2016 Nov 1;24(11):1886-1897. doi: 10.1016/j.str.2016.08.010. Epub 2016 Sep 22.

PMID:
27667690
12.

The short-chain oxidoreductase Q9HYA2 from Pseudomonas aeruginosa PAO1 contains an atypical catalytic center.

Huether R, Mao Q, Duax WL, Umland TC.

Protein Sci. 2010 May;19(5):1097-103. doi: 10.1002/pro.384.

13.

Molecular basis of dihydrouridine formation on tRNA.

Yu F, Tanaka Y, Yamashita K, Suzuki T, Nakamura A, Hirano N, Suzuki T, Yao M, Tanaka I.

Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19593-8. doi: 10.1073/pnas.1112352108. Epub 2011 Nov 28.

14.

Crystal structures of Cg1458 reveal a catalytic lid domain and a common catalytic mechanism for the FAH family.

Ran T, Gao Y, Marsh M, Zhu W, Wang M, Mao X, Xu L, Xu D, Wang W.

Biochem J. 2013 Jan 1;449(1):51-60. doi: 10.1042/BJ20120913.

PMID:
23046410
15.

Crystal structure analysis of ornithine transcarbamylase from Thermus thermophilus --HB8 provides insights on the plasticity of the active site.

Sundaresan R, Ebihara A, Kuramitsu S, Yokoyama S, Kumarevel T, Ponnuraj K.

Biochem Biophys Res Commun. 2015 Sep 18;465(2):174-9. doi: 10.1016/j.bbrc.2015.07.096. Epub 2015 Jul 23.

PMID:
26210451
16.

Differential effects of a mutation on the normal and promiscuous activities of orthologs: implications for natural and directed evolution.

Khanal A, Yu McLoughlin S, Kershner JP, Copley SD.

Mol Biol Evol. 2015 Jan;32(1):100-8. doi: 10.1093/molbev/msu271. Epub 2014 Sep 21.

17.

Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.

Igari S, Ohtaki A, Yamanaka Y, Sato Y, Yohda M, Odaka M, Noguchi K, Yamada K.

PLoS One. 2011;6(8):e23716. doi: 10.1371/journal.pone.0023716. Epub 2011 Aug 15.

18.

Structural changes that occur upon photolysis of the Fe(II)(a3)-CO complex in the cytochrome ba(3)-oxidase of Thermus thermophilus: a combined X-ray crystallographic and infrared spectral study demonstrates CO binding to Cu(B).

Liu B, Zhang Y, Sage JT, Soltis SM, Doukov T, Chen Y, Stout CD, Fee JA.

Biochim Biophys Acta. 2012 Apr;1817(4):658-65. doi: 10.1016/j.bbabio.2011.12.010. Epub 2011 Dec 27.

19.

Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin.

Helmich KE, Pereira JH, Gall DL, Heins RA, McAndrew RP, Bingman C, Deng K, Holland KC, Noguera DR, Simmons BA, Sale KL, Ralph J, Donohue TJ, Adams PD, Phillips GN Jr.

J Biol Chem. 2016 Mar 4;291(10):5234-46. doi: 10.1074/jbc.M115.694307. Epub 2015 Dec 4.

20.

Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism.

Rohman A, van Oosterwijk N, Thunnissen AM, Dijkstra BW.

J Biol Chem. 2013 Dec 6;288(49):35559-68. doi: 10.1074/jbc.M113.522771. Epub 2013 Oct 28.

Supplemental Content

Support Center