Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 154

1.

FAR1 and FAR2 regulate the expression of genes associated with lipid metabolism in the rice blast fungus Magnaporthe oryzae.

bin Yusof MT, Kershaw MJ, Soanes DM, Talbot NJ.

PLoS One. 2014 Jun 20;9(6):e99760. doi: 10.1371/journal.pone.0099760. eCollection 2014.

3.

Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae.

Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ.

PLoS Pathog. 2012 Feb;8(2):e1002514. doi: 10.1371/journal.ppat.1002514. Epub 2012 Feb 9.

4.

Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae.

Kim S, Park SY, Kim KS, Rho HS, Chi MH, Choi J, Park J, Kong S, Park J, Goh J, Lee YH.

PLoS Genet. 2009 Dec;5(12):e1000757. doi: 10.1371/journal.pgen.1000757. Epub 2009 Dec 4.

5.

Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae.

Fernandez J, Marroquin-Guzman M, Wilson RA.

PLoS Pathog. 2014 Sep 4;10(9):e1004354. doi: 10.1371/journal.ppat.1004354. eCollection 2014 Sep.

6.

The Cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae.

Zhou X, Zhang H, Li G, Shaw B, Xu JR.

PLoS Pathog. 2012 Sep;8(9):e1002911. doi: 10.1371/journal.ppat.1002911. Epub 2012 Sep 6.

7.

Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae.

Kong LA, Yang J, Li GT, Qi LL, Zhang YJ, Wang CF, Zhao WS, Xu JR, Peng YL.

PLoS Pathog. 2012 Feb;8(2):e1002526. doi: 10.1371/journal.ppat.1002526. Epub 2012 Feb 9.

8.

Peroxisomal alanine: glyoxylate aminotransferase AGT1 is indispensable for appressorium function of the rice blast pathogen, Magnaporthe oryzae.

Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y.

PLoS One. 2012;7(4):e36266. doi: 10.1371/journal.pone.0036266. Epub 2012 Apr 27.

9.

ZNF1 Encodes a Putative C2H2 Zinc-Finger Protein Essential for Appressorium Differentiation by the Rice Blast Fungus Magnaporthe oryzae.

Yue X, Que Y, Xu L, Deng S, Peng Y, Talbot NJ, Wang Z.

Mol Plant Microbe Interact. 2016 Jan;29(1):22-35. doi: 10.1094/MPMI-09-15-0201-R. Epub 2015 Dec 4.

10.

The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae.

Li Y, Que Y, Liu Y, Yue X, Meng X, Zhang Z, Wang Z.

Curr Genet. 2015 Nov;61(4):641-51. doi: 10.1007/s00294-015-0490-1. Epub 2015 May 6.

PMID:
25944571
11.

Alanine: Glyoxylate aminotransferase 1 is required for mobilization and utilization of triglycerides during infection process of the rice blast pathogen, Magnaporthe oryzae.

Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y.

Plant Signal Behav. 2012 Sep 1;7(9):1206-8. doi: 10.4161/psb.21368. Epub 2012 Aug 17.

12.
13.

Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae.

Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder JH, Lin F, Lu J.

New Phytol. 2016 Aug;211(3):1035-51. doi: 10.1111/nph.13948. Epub 2016 Apr 4.

14.

Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus.

Galhano R, Illana A, Ryder LS, Rodríguez-Romero J, Demuez M, Badaruddin M, Martinez-Rocha AL, Soanes DM, Studholme DJ, Talbot NJ, Sesma A.

PLoS Pathog. 2017 Jul 24;13(7):e1006516. doi: 10.1371/journal.ppat.1006516. eCollection 2017 Jul.

15.

Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus.

Chen XL, Shen M, Yang J, Xing Y, Chen D, Li Z, Zhao W, Zhang Y.

Mol Plant Pathol. 2017 Feb;18(2):222-237. doi: 10.1111/mpp.12395. Epub 2016 Jun 9.

PMID:
26950649
16.

A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae.

Guo M, Tan L, Nie X, Zhang Z.

Virulence. 2017 Oct 3;8(7):1335-1354. doi: 10.1080/21505594.2017.1323156. Epub 2017 Apr 27.

PMID:
28448785
17.

The appressorium of the rice blast fungus Magnaporthe oryzae remains mitotically active during post-penetration hyphal growth.

Jenkinson CB, Jones K, Zhu J, Dorhmi S, Khang CH.

Fungal Genet Biol. 2017 Jan;98:35-38. doi: 10.1016/j.fgb.2016.11.006. Epub 2016 Nov 23.

18.

An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus.

Wilson RA, Gibson RP, Quispe CF, Littlechild JA, Talbot NJ.

Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21902-7. doi: 10.1073/pnas.1006839107. Epub 2010 Nov 29.

19.

Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.

Yan X, Li Y, Yue X, Wang C, Que Y, Kong D, Ma Z, Talbot NJ, Wang Z.

PLoS Pathog. 2011 Dec;7(12):e1002385. doi: 10.1371/journal.ppat.1002385. Epub 2011 Dec 1.

20.

MoGrr1, a novel F-box protein, is involved in conidiogenesis and cell wall integrity and is critical for the full virulence of Magnaporthe oryzae.

Guo M, Gao F, Zhu X, Nie X, Pan Y, Gao Z.

Appl Microbiol Biotechnol. 2015 Oct;99(19):8075-88. doi: 10.1007/s00253-015-6820-x. Epub 2015 Jul 31.

PMID:
26227409

Supplemental Content

Support Center