Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Initial step of pH-jump-induced lamellar to bicontinuous cubic phase transition in dioleoylphosphatidylserine/monoolein.

Oka T, Tsuboi TA, Saiki T, Takahashi T, Alam JM, Yamazaki M.

Langmuir. 2014 Jul 15;30(27):8131-40. doi: 10.1021/la5021719. Epub 2014 Jul 2.

PMID:
24949525
2.

Activation Energy of the Low-pH-Induced Lamellar to Bicontinuous Cubic Phase Transition in Dioleoylphosphatidylserine/Monoolein.

Oka T, Saiki T, Alam JM, Yamazaki M.

Langmuir. 2016 Feb 9;32(5):1327-37. doi: 10.1021/acs.langmuir.5b03785. Epub 2016 Jan 27.

PMID:
26766583
3.

Low-pH-induced transformation of bilayer membrane into bicontinuous cubic phase in dioleoylphosphatidylserine/monoolein membranes.

Okamoto Y, Masum SM, Miyazawa H, Yamazaki M.

Langmuir. 2008 Apr 1;24(7):3400-6. doi: 10.1021/la7036795. Epub 2008 Feb 27.

PMID:
18302439
4.

Kinetics of low pH-induced lamellar to bicontinuous cubic phase transition in dioleoylphosphatidylserine∕monoolein.

Alam MM, Oka T, Ohta N, Yamazaki M.

J Chem Phys. 2011 Apr 14;134(14):145102. doi: 10.1063/1.3575240.

PMID:
21495771
5.
6.

Calcium triggered L alpha-H2 phase transition monitored by combined rapid mixing and time-resolved synchrotron SAXS.

Yaghmur A, Laggner P, Sartori B, Rappolt M.

PLoS One. 2008 Apr 30;3(4):e2072. doi: 10.1371/journal.pone.0002072.

8.
9.
10.
11.

GUVs melt like LUVs: the large heat capacity of MLVs is not due to large size or small curvature.

Kreutzberger MA, Tejada E, Wang Y, Almeida PF.

Biophys J. 2015 Jun 2;108(11):2619-22. doi: 10.1016/j.bpj.2015.04.034.

12.

The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction.

Mannock DA, Collins MD, Kreichbaum M, Harper PE, Gruner SM, McElhaney RN.

Chem Phys Lipids. 2007 Jul;148(1):26-50. Epub 2007 Apr 19.

PMID:
17524381
13.

A pressure-jump time-resolved X-ray diffraction study of cubic-cubic transition kinetics in monoolein.

Conn CE, Ces O, Squires AM, Mulet X, Winter R, Finet SM, Templer RH, Seddon JM.

Langmuir. 2008 Mar 18;24(6):2331-40. doi: 10.1021/la7023378. Epub 2008 Feb 8.

PMID:
18257588
14.

Towards redox active liquid crystalline phases of lipids: a monoolein/water system with entrapped derivatives of ferrocene.

Barauskas J, Razumas V, Talaikyte Z, Bulovas A, Nylander T, Tauraite D, Butkus E.

Chem Phys Lipids. 2003 Mar;123(1):87-97.

PMID:
12637167
15.

Biological artificial fluid-induced non-lamellar phases in glyceryl monooleate: the kinetics pathway and its digestive process by bile salts.

Zhou Y, Wang Q, Wang Y, Xu H, Yuan B, Li S, Liu H.

Drug Dev Ind Pharm. 2014 Feb;40(2):178-85. doi: 10.3109/03639045.2012.752502. Epub 2013 Jan 25.

PMID:
23350691
16.

Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases.

Siegel DP, Tenchov BG.

Biophys J. 2008 May 15;94(10):3987-95. doi: 10.1529/biophysj.107.118034. Epub 2008 Jan 30.

17.
18.
19.
20.

Hydrostatic pressure effects on the lamellar to gyroid cubic phase transition of monolinolein at limited hydration.

Tang TY, Brooks NJ, Jeworrek C, Ces O, Terrill NJ, Winter R, Templer RH, Seddon JM.

Langmuir. 2012 Sep 11;28(36):13018-24. doi: 10.1021/la3025843. Epub 2012 Aug 27.

PMID:
22894718

Supplemental Content

Support Center