Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Toxicity of abiotic stressors to Fusarium species: differences in hydrogen peroxide and fungicide tolerance.

Nagygyörgy ED, Kovács B, Leiter E, Miskei M, Pócsi I, Hornok L, Adám AL.

Acta Microbiol Immunol Hung. 2014 Jun;61(2):189-208. doi: 10.1556/AMicr.61.2014.2.9.

PMID:
24939687
2.

Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses.

Becher R, Weihmann F, Deising HB, Wirsel SG.

BMC Genomics. 2011 Jan 21;12:52. doi: 10.1186/1471-2164-12-52.

3.

Phylogenetic diversity of stress signalling pathways in fungi.

Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJ.

BMC Evol Biol. 2009 Feb 21;9:44. doi: 10.1186/1471-2148-9-44.

4.

In Vitro Production of Fumonisins by Fusarium verticillioides under Oxidative Stress Induced by H2O2.

Ferrigo D, Raiola A, Bogialli S, Bortolini C, Tapparo A, Causin R.

J Agric Food Chem. 2015 May 20;63(19):4879-85. doi: 10.1021/acs.jafc.5b00113. Epub 2015 May 7.

PMID:
25910187
5.

FgFim, a key protein regulating resistance to the fungicide JS399-19, asexual and sexual development, stress responses and virulence in Fusarium graminearum.

Zheng Z, Gao T, Zhang Y, Hou Y, Wang J, Zhou M.

Mol Plant Pathol. 2014 Jun;15(5):488-99. doi: 10.1111/mpp.12108. Epub 2014 Jan 15.

PMID:
24299032
6.

Fusarium response to oxidative stress by H2O2 is trichothecene chemotype-dependent.

Ponts N, Couedelo L, Pinson-Gadais L, Verdal-Bonnin MN, Barreau C, Richard-Forget F.

FEMS Microbiol Lett. 2009 Apr;293(2):255-62. doi: 10.1111/j.1574-6968.2009.01521.x. Epub 2009 Feb 23.

7.

Is the Fgap1 mediated response to oxidative stress chemotype dependent in Fusarium graminearum?

Montibus M, Khosravi C, Zehraoui E, Verdal-Bonnin MN, Richard-Forget F, Barreau C.

FEMS Microbiol Lett. 2016 Jan;363(2):fnv232. doi: 10.1093/femsle/fnv232. Epub 2015 Dec 9.

PMID:
26656279
8.

Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans.

Vargas-Pérez I, Sánchez O, Kawasaki L, Georgellis D, Aguirre J.

Eukaryot Cell. 2007 Sep;6(9):1570-83. Epub 2007 Jul 13.

9.

[Adaptation of the phytopathogenic fungus Fusarium decemcellulare to oxidative stress].

Medentsev AG, Arinbasarova AIu, Aimenko VK.

Mikrobiologiia. 2001 Jan-Feb;70(1):34-8. Russian.

PMID:
11338833
10.

Exogenous H(2)O(2) and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum.

Ponts N, Pinson-Gadais L, Barreau C, Richard-Forget F, Ouellet T.

FEBS Lett. 2007 Feb 6;581(3):443-7. Epub 2007 Jan 16.

11.

The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways.

Yun Y, Liu Z, Zhang J, Shim WB, Chen Y, Ma Z.

Environ Microbiol. 2014 Jul;16(7):2023-37. doi: 10.1111/1462-2920.12334. Epub 2013 Dec 10.

PMID:
24237706
12.
13.

Involvement of FgERG4 in ergosterol biosynthesis, vegetative differentiation and virulence in Fusarium graminearum.

Liu X, Jiang J, Yin Y, Ma Z.

Mol Plant Pathol. 2013 Jan;14(1):71-83. doi: 10.1111/j.1364-3703.2012.00829.x. Epub 2012 Sep 4.

PMID:
22947191
14.

Genome-wide transcriptional responses of Fusarium graminearum to plant cell wall substrates.

Carapito R, Vorwerk S, Jeltsch JM, Phalip V.

FEMS Microbiol Lett. 2013 Mar;340(2):129-34. doi: 10.1111/1574-6968.12079. Epub 2013 Jan 24.

15.

FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum.

Jiang J, Yun Y, Liu Y, Ma Z.

Fungal Genet Biol. 2012 Aug;49(8):653-62. doi: 10.1016/j.fgb.2012.06.005. Epub 2012 Jun 17.

PMID:
22713714
16.

Transcription factor CCG-8 as a new regulator in the adaptation to antifungal azole stress.

Sun X, Wang K, Yu X, Liu J, Zhang H, Zhou F, Xie B, Li S.

Antimicrob Agents Chemother. 2014;58(3):1434-42. doi: 10.1128/AAC.02244-13. Epub 2013 Dec 16.

17.

Involvement of a putative response regulator FgRrg-1 in osmotic stress response, fungicide resistance and virulence in Fusarium graminearum.

Jiang J, Yun Y, Fu J, Shim WB, Ma Z.

Mol Plant Pathol. 2011 Jun;12(5):425-36. doi: 10.1111/j.1364-3703.2010.00684.x. Epub 2011 Jan 5.

PMID:
21535349
18.

Whole-genome sequencing reveals that mutations in myosin-5 confer resistance to the fungicide phenamacril in Fusarium graminearum.

Zheng Z, Hou Y, Cai Y, Zhang Y, Li Y, Zhou M.

Sci Rep. 2015 Feb 4;5:8248. doi: 10.1038/srep08248.

19.

The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum.

Merhej J, Richard-Forget F, Barreau C.

Fungal Genet Biol. 2011 Mar;48(3):275-84. doi: 10.1016/j.fgb.2010.11.008. Epub 2010 Nov 30.

PMID:
21126599
20.

A novel gene, GEA1, is required for ascus cell-wall development in the ascomycete fungus Fusarium graminearum.

Son H, Lee J, Lee YW.

Microbiology. 2013 Jun;159(Pt 6):1077-85. doi: 10.1099/mic.0.064287-0. Epub 2013 Apr 25.

PMID:
23619001

Supplemental Content

Support Center