Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 138

1.

Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803.

Kopf M, Klähn S, Scholz I, Matthiessen JK, Hess WR, Voß B.

DNA Res. 2014 Oct;21(5):527-39. doi: 10.1093/dnares/dsu018. Epub 2014 Jun 16.

2.

The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria.

Georg J, Dienst D, Schürgers N, Wallner T, Kopp D, Stazic D, Kuchmina E, Klähn S, Lokstein H, Hess WR, Wilde A.

Plant Cell. 2014 Sep;26(9):3661-79. doi: 10.1105/tpc.114.129767. Epub 2014 Sep 23.

3.

The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803.

Hernández-Prieto MA, Semeniuk TA, Giner-Lamia J, Futschik ME.

Sci Rep. 2016 Feb 29;6:22168. doi: 10.1038/srep22168.

4.

Small proteins in cyanobacteria provide a paradigm for the functional analysis of the bacterial micro-proteome.

Baumgartner D, Kopf M, Klähn S, Steglich C, Hess WR.

BMC Microbiol. 2016 Nov 28;16(1):285.

5.

Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of stress acclimation.

Billis K, Billini M, Tripp HJ, Kyrpides NC, Mavromatis K.

PLoS One. 2014 Oct 23;9(10):e109738. doi: 10.1371/journal.pone.0109738. eCollection 2014.

6.

Regulatory RNAs in photosynthetic cyanobacteria.

Kopf M, Hess WR.

FEMS Microbiol Rev. 2015 May;39(3):301-15. doi: 10.1093/femsre/fuv017. Epub 2015 Apr 30. Review.

PMID:
25934122
7.

6S RNA plays a role in recovery from nitrogen depletion in Synechocystis sp. PCC 6803.

Heilmann B, Hakkila K, Georg J, Tyystjärvi T, Hess WR, Axmann IM, Dienst D.

BMC Microbiol. 2017 Dec 8;17(1):229. doi: 10.1186/s12866-017-1137-9.

8.

Integrated Analysis of Engineered Carbon Limitation in a Quadruple CO2/HCO3- Uptake Mutant of Synechocystis sp. PCC 6803.

Orf I, Klähn S, Schwarz D, Frank M, Hess WR, Hagemann M, Kopka J.

Plant Physiol. 2015 Nov;169(3):1787-806. doi: 10.1104/pp.15.01289. Epub 2015 Sep 15.

9.

Complementary iTRAQ proteomics and RNA-seq transcriptomics reveal multiple levels of regulation in response to nitrogen starvation in Synechocystis sp. PCC 6803.

Huang S, Chen L, Te R, Qiao J, Wang J, Zhang W.

Mol Biosyst. 2013 Oct;9(10):2565-74. doi: 10.1039/c3mb70188c.

PMID:
23942477
10.

A Feed-Forward Loop Consisting of the Response Regulator RpaB and the Small RNA PsrR1 Controls Light Acclimation of Photosystem I Gene Expression in the Cyanobacterium Synechocystis sp. PCC 6803.

Kadowaki T, Nagayama R, Georg J, Nishiyama Y, Wilde A, Hess WR, Hihara Y.

Plant Cell Physiol. 2016 Apr;57(4):813-23. doi: 10.1093/pcp/pcw028. Epub 2016 Feb 12.

PMID:
26872833
11.

High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates.

Dugar G, Herbig A, Förstner KU, Heidrich N, Reinhardt R, Nieselt K, Sharma CM.

PLoS Genet. 2013 May;9(5):e1003495. doi: 10.1371/journal.pgen.1003495. Epub 2013 May 16.

12.

Deep sequencing-based identification of small regulatory RNAs in Synechocystis sp. PCC 6803.

Xu W, Chen H, He CL, Wang Q.

PLoS One. 2014 Mar 19;9(3):e92711. doi: 10.1371/journal.pone.0092711. eCollection 2014.

13.

Positive regulation of psbA gene expression by cis-encoded antisense RNAs in Synechocystis sp. PCC 6803.

Sakurai I, Stazic D, Eisenhut M, Vuorio E, Steglich C, Hess WR, Aro EM.

Plant Physiol. 2012 Oct;160(2):1000-10. doi: 10.1104/pp.112.202127. Epub 2012 Aug 2.

14.

Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium.

Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-Pakrasi M, Pakrasi HB.

BMC Syst Biol. 2010 Aug 2;4:105. doi: 10.1186/1752-0509-4-105.

15.

Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803.

Zhang Z, Pendse ND, Phillips KN, Cotner JB, Khodursky A.

BMC Genomics. 2008 Jul 21;9:344. doi: 10.1186/1471-2164-9-344.

16.

A Transcriptome Map of Actinobacillus pleuropneumoniae at Single-Nucleotide Resolution Using Deep RNA-Seq.

Su Z, Zhu J, Xu Z, Xiao R, Zhou R, Li L, Chen H.

PLoS One. 2016 Mar 28;11(3):e0152363. doi: 10.1371/journal.pone.0152363. eCollection 2016.

17.

The antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 prevents premature expression of the flv4-2 operon upon shift in inorganic carbon supply.

Eisenhut M, Georg J, Klähn S, Sakurai I, Mustila H, Zhang P, Hess WR, Aro EM.

J Biol Chem. 2012 Sep 28;287(40):33153-62. Epub 2012 Aug 1.

18.

The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7.

Klähn S, Schaal C, Georg J, Baumgartner D, Knippen G, Hagemann M, Muro-Pastor AM, Hess WR.

Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):E6243-52. doi: 10.1073/pnas.1508412112. Epub 2015 Oct 22.

19.

Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria.

Kopf M, Klähn S, Scholz I, Hess WR, Voß B.

Sci Rep. 2015 Apr 22;5:9560. doi: 10.1038/srep09560.

20.

Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803.

Krasikov V, Aguirre von Wobeser E, Dekker HL, Huisman J, Matthijs HC.

Physiol Plant. 2012 Jul;145(3):426-39. doi: 10.1111/j.1399-3054.2012.01585.x. Epub 2012 Mar 14.

PMID:
22289076

Supplemental Content

Support Center