Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Trapping and release of giant unilamellar vesicles in microfluidic wells.

Yamada A, Lee S, Bassereau P, Baroud CN.

Soft Matter. 2014 Aug 28;10(32):5878-85. doi: 10.1039/c4sm00065j.

PMID:
24930637
2.

Microfluidic trapping of giant unilamellar vesicles to study transport through a membrane pore.

Robinson T, Kuhn P, Eyer K, Dittrich PS.

Biomicrofluidics. 2013 Jul 26;7(4):44105. doi: 10.1063/1.4816712. eCollection 2013.

3.

A membrane filtering method for the purification of giant unilamellar vesicles.

Tamba Y, Terashima H, Yamazaki M.

Chem Phys Lipids. 2011 Jul;164(5):351-8. doi: 10.1016/j.chemphyslip.2011.04.003. Epub 2011 Apr 15.

PMID:
21524642
4.

Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.

Karamdad K, Law RV, Seddon JM, Brooks NJ, Ces O.

Lab Chip. 2015 Jan 21;15(2):557-62. doi: 10.1039/c4lc01277a.

PMID:
25413588
5.

Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap.

Solmaz ME, Biswas R, Sankhagowit S, Thompson JR, Mejia CA, Malmstadt N, Povinelli ML.

Biomed Opt Express. 2012 Oct 1;3(10):2419-27. doi: 10.1364/BOE.3.002419. Epub 2012 Sep 7.

6.

Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes.

Zhu C, Zhang Y, Wang Y, Li Q, Mu W, Han X.

Chemistry. 2016 Feb 24;22(9):2906-9. doi: 10.1002/chem.201504389. Epub 2016 Jan 28.

PMID:
26756162
7.

Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions.

Mikelj M, Praper T, Demič R, Hodnik V, Turk T, Anderluh G.

Anal Biochem. 2013 Apr 15;435(2):174-80. doi: 10.1016/j.ab.2013.01.001. Epub 2013 Jan 17.

PMID:
23333270
8.

Hydrodynamic filtration in microfluidic channels as size-selection process for giant unilamellar vesicles.

Woo Y, Heo Y, Shin K, Yi GR.

J Biomed Nanotechnol. 2013 Apr;9(4):610-4.

PMID:
23621019
9.

Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems.

Wesołowska O, Michalak K, Maniewska J, Hendrich AB.

Acta Biochim Pol. 2009;56(1):33-9. Epub 2009 Mar 17. Review.

10.

Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation.

Arriaga LR, Datta SS, Kim SH, Amstad E, Kodger TE, Monroy F, Weitz DA.

Small. 2014 Mar 12;10(5):950-6. doi: 10.1002/smll.201301904. Epub 2013 Oct 22.

PMID:
24150883
11.
12.

Microwave measurement of giant unilamellar vesicles in aqueous solution.

Cui Y, Delaney WF, Darroudi T, Wang P.

Sci Rep. 2018 Jan 11;8(1):497. doi: 10.1038/s41598-017-18806-9.

13.

Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.

Matosevic S.

Bioessays. 2012 Nov;34(11):992-1001. doi: 10.1002/bies.201200105. Epub 2012 Aug 24. Review.

PMID:
22926929
14.

Macroscopic consequences of the action of phospholipase C on giant unilamellar liposomes.

Holopainen JM, Angelova MI, Söderlund T, Kinnunen PK.

Biophys J. 2002 Aug;83(2):932-43.

15.

Giant unilamellar vesicles containing phosphatidylinositol(4,5)bisphosphate: characterization and functionality.

Carvalho K, Ramos L, Roy C, Picart C.

Biophys J. 2008 Nov 1;95(9):4348-60. doi: 10.1529/biophysj.107.126912. Epub 2008 May 23.

16.

Extrusion of electroformed giant unilamellar vesicles through track-etched membranes.

Patil YP, Kumbhalkar MD, Jadhav S.

Chem Phys Lipids. 2012 May;165(4):475-81. doi: 10.1016/j.chemphyslip.2011.11.013. Epub 2011 Dec 3.

PMID:
22155692
17.

Pulling Membrane Nanotubes from Giant Unilamellar Vesicles.

Prévost C, Tsai FC, Bassereau P, Simunovic M.

J Vis Exp. 2017 Dec 7;(130). doi: 10.3791/56086.

PMID:
29286431
18.

Selective adhesion, lipid exchange and membrane-fusion processes between vesicles of various sizes bearing complementary molecular recognition groups.

Marchi-Artzner V, Gulik-Krzywicki T, Guedeau-Boudeville MA, Gosse C, Sanderson JM, Dedieu JC, Lehn JM.

Chemphyschem. 2001 Jun 18;2(6):367-76. doi: 10.1002/1439-7641(20010618)2:6<367::AID-CPHC367>3.0.CO;2-#.

PMID:
23686958
19.

Straining soft colloids in aqueous nematic liquid crystals.

Mushenheim PC, Pendery JS, Weibel DB, Spagnolie SE, Abbott NL.

Proc Natl Acad Sci U S A. 2016 May 17;113(20):5564-9. doi: 10.1073/pnas.1600836113. Epub 2016 May 2.

20.

Analysis of constant tension-induced rupture of lipid membranes using activation energy.

Karal MA, Levadnyy V, Yamazaki M.

Phys Chem Chem Phys. 2016 May 11;18(19):13487-95. doi: 10.1039/c6cp01184e.

PMID:
27125194

Supplemental Content

Support Center