Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 210

1.

Lithium-ion transport through a tailored disordered phase on the LiNi0.5 Mn1.5 O4 surface for high-power cathode materials.

Jo MR, Kim YI, Kim Y, Chae JS, Roh KC, Yoon WS, Kang YM.

ChemSusChem. 2014 Aug;7(8):2248-54. doi: 10.1002/cssc.201402109. Epub 2014 Jun 12.

PMID:
24924807
2.

Sol-gel synthesis of aliovalent vanadium-doped LiNi(0.5)Mn(1.5)O(4) cathodes with excellent performance at high temperatures.

Kim MC, Nam KW, Hu E, Yang XQ, Kim H, Kang K, Aravindan V, Kim WS, Lee YS.

ChemSusChem. 2014 Mar;7(3):829-34. doi: 10.1002/cssc.201301037. Epub 2014 Jan 7.

PMID:
24399460
3.

The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries.

Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B.

Adv Mater. 2012 Mar 2;24(9):1192-6. doi: 10.1002/adma.201104106.

PMID:
22362564
4.

Design of Surface Doping for Mitigating Transition Metal Dissolution in LiNi0.5 Mn1.5 O4 Nanoparticles.

Lim JM, Oh RG, Kim D, Cho W, Cho K, Cho M, Park MS.

ChemSusChem. 2016 Sep 21. doi: 10.1002/cssc.201600821. [Epub ahead of print]

PMID:
27650134
5.

Enhancing the electrochemical performance of the LiMn(2)O(4) hollow microsphere cathode with a LiNi(0.5)Mn(1.5)O(4) coated layer.

Liu W, Liu J, Chen K, Ji S, Wan Y, Zhou Y, Xue D, Hodgson P, Li Y.

Chemistry. 2014 Jan 13;20(3):824-30. doi: 10.1002/chem.201303675. Epub 2013 Dec 11.

PMID:
24339205
6.

Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode.

Rangappa D, Murukanahally KD, Tomai T, Unemoto A, Honma I.

Nano Lett. 2012 Mar 14;12(3):1146-51. doi: 10.1021/nl202681b. Epub 2012 Feb 17.

PMID:
22332722
7.

Foamlike porous spinel Mn(x)Co(3-x)O4 material derived from Mn3[Co(CN)6]2⋅nH2O nanocubes: a highly efficient anode material for lithium batteries.

Hu L, Zhang P, Zhong H, Zheng X, Yan N, Chen Q.

Chemistry. 2012 Nov 19;18(47):15049-56. doi: 10.1002/chem.201200412. Epub 2012 Oct 2.

PMID:
23032561
8.

Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries.

Kim Y.

ACS Appl Mater Interfaces. 2012 May;4(5):2329-33. doi: 10.1021/am300386j. Epub 2012 Apr 17.

PMID:
22497580
9.

Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder.

Zheng J, Xiao J, Yu X, Kovarik L, Gu M, Omenya F, Chen X, Yang XQ, Liu J, Graff GL, Whittingham MS, Zhang JG.

Phys Chem Chem Phys. 2012 Oct 21;14(39):13515-21.

PMID:
22968196
10.

AlF3 surface-coated Li[Li0.2 Ni0.17 Co0.07 Mn0.56 ]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries.

Sun S, Yin Y, Wan N, Wu Q, Zhang X, Pan D, Bai Y, Lu X.

ChemSusChem. 2015 Aug 10;8(15):2544-50. doi: 10.1002/cssc.201500143. Epub 2015 Jun 24.

PMID:
26105748
11.

Understanding of Surface Redox Behaviors of Li2MnO3 in Li-Ion Batteries: First-Principles Prediction and Experimental Validation.

Kim D, Lim JM, Lim YG, Park MS, Kim YJ, Cho M, Cho K.

ChemSusChem. 2015 Oct 12;8(19):3255-62. doi: 10.1002/cssc.201500706. Epub 2015 Aug 19.

PMID:
26289748
12.

Growth of hierarchical 3D mesoporous NiSix /NiCo2 O4 core/shell heterostructures on nickel foam for lithium-ion batteries.

Zhang Q, Chen H, Wang J, Xu D, Li X, Yang Y, Zhang K.

ChemSusChem. 2014 Aug;7(8):2325-34. doi: 10.1002/cssc.201402039. Epub 2014 May 14.

PMID:
24828680
13.

Combinatorial Study of the Li-Ni-Mn-Co Oxide Pseudoquaternary System for Use in Li-Ion Battery Materials Research.

Brown CR, McCalla E, Watson C, Dahn JR.

ACS Comb Sci. 2015 Jun 8;17(6):381-91. doi: 10.1021/acscombsci.5b00048. Epub 2015 May 21.

PMID:
25970448
14.

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

Lin F, Markus IM, Nordlund D, Weng TC, Asta MD, Xin HL, Doeff MM.

Nat Commun. 2014 Mar 27;5:3529. doi: 10.1038/ncomms4529.

PMID:
24670975
15.

Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.

Liu H, Wang J, Zhang X, Zhou D, Qi X, Qiu B, Fang J, Kloepsch R, Schumacher G, Liu Z, Li J.

ACS Appl Mater Interfaces. 2016 Feb;8(7):4661-75. doi: 10.1021/acsami.5b11389. Epub 2016 Feb 15.

PMID:
26824793
16.

A High-Voltage and High-Capacity Li1+x Ni0.5 Mn1.5 O4 Cathode Material: From Synthesis to Full Lithium-Ion Cells.

Mancini M, Axmann P, Gabrielli G, Kinyanjui M, Kaiser U, Wohlfahrt-Mehrens M.

ChemSusChem. 2016 Jul 21;9(14):1843-9. doi: 10.1002/cssc.201600365. Epub 2016 Jun 6.

PMID:
27273330
17.

Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries.

Jiang KC, Wu XL, Yin YX, Lee JS, Kim J, Guo YG.

ACS Appl Mater Interfaces. 2012 Sep 26;4(9):4858-63. Epub 2012 Sep 7.

PMID:
22931115
18.

Role of local and electronic structural changes with partially anion substitution lithium manganese spinel oxides on their electrochemical properties: X-ray absorption spectroscopy study.

Okumura T, Fukutsuka T, Matsumoto K, Orikasa Y, Arai H, Ogumi Z, Uchimoto Y.

Dalton Trans. 2011 Oct 14;40(38):9752-64. doi: 10.1039/c1dt10612k. Epub 2011 Aug 24.

PMID:
21869978
19.

Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance.

Fu C, Li G, Luo D, Li Q, Fan J, Li L.

ACS Appl Mater Interfaces. 2014 Sep 24;6(18):15822-31. doi: 10.1021/am5030726. Epub 2014 Sep 9.

PMID:
25203668
20.

Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O₂ for high-rate performance lithium-ion batteries.

Wei GZ, Lu X, Ke FS, Huang L, Li JT, Wang ZX, Zhou ZY, Sun SG.

Adv Mater. 2010 Oct 15;22(39):4364-7. doi: 10.1002/adma.201001578.

PMID:
20803764
Items per page

Supplemental Content

Write to the Help Desk