Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Fructose 1-phosphate is the one and only physiological effector of the Cra (FruR) regulator of Pseudomonas putida.

Chavarría M, Durante-Rodríguez G, Krell T, Santiago C, Brezovsky J, Damborsky J, de Lorenzo V.

FEBS Open Bio. 2014 Apr 4;4:377-86. doi: 10.1016/j.fob.2014.03.013. eCollection 2014.

2.

Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida.

Chavarría M, Santiago C, Platero R, Krell T, Casasnovas JM, de Lorenzo V.

J Biol Chem. 2011 Mar 18;286(11):9351-9. doi: 10.1074/jbc.M110.187583. Epub 2011 Jan 14.

3.

Cra regulates the cross-talk between the two branches of the phosphoenolpyruvate : phosphotransferase system of Pseudomonas putida.

Chavarría M, Fuhrer T, Sauer U, Pflüger-Grau K, de Lorenzo V.

Environ Microbiol. 2013 Jan;15(1):121-32. doi: 10.1111/j.1462-2920.2012.02808.x. Epub 2012 Jun 19.

PMID:
22708906
4.

A Metabolic Widget Adjusts the Phosphoenolpyruvate-Dependent Fructose Influx in Pseudomonas putida.

Chavarría M, Goñi-Moreno Á, de Lorenzo V, Nikel PI.

mSystems. 2016 Dec 6;1(6). pii: e00154-16. eCollection 2016 Nov-Dec.

6.

Succinate production positively correlates with the affinity of the global transcription factor Cra for its effector FBP in Escherichia coli.

Wei LN, Zhu LW, Tang YJ.

Biotechnol Biofuels. 2016 Dec 8;9:264. doi: 10.1186/s13068-016-0679-7. eCollection 2016.

7.

Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.

Matsuoka Y, Shimizu K.

J Biotechnol. 2013 Oct 20;168(2):155-73. doi: 10.1016/j.jbiotec.2013.06.023. Epub 2013 Jul 10.

PMID:
23850830
8.

Cra-mediated regulation of Escherichia coli adenylate cyclase.

Crasnier-Mednansky M, Park MC, Studley WK, Saier MH Jr.

Microbiology. 1997 Mar;143 ( Pt 3):785-92.

PMID:
9084162
9.

Enhancing succinic acid biosynthesis in Escherichia coli by engineering its global transcription factor, catabolite repressor/activator (Cra).

Zhu LW, Xia ST, Wei LN, Li HM, Yuan ZP, Tang YJ.

Sci Rep. 2016 Nov 4;6:36526. doi: 10.1038/srep36526.

10.

Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site.

Barrière C, Veiga-da-Cunha M, Pons N, Guédon E, van Hijum SA, Kok J, Kuipers OP, Ehrlich DS, Renault P.

J Bacteriol. 2005 Jun;187(11):3752-61.

11.
12.

Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate.

Schumacher MA, Seidel G, Hillen W, Brennan RG.

J Mol Biol. 2007 May 11;368(4):1042-50. Epub 2007 Feb 27.

PMID:
17376479
13.
15.

Crystal structures of the effector-binding domain of repressor Central glycolytic gene Regulator from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates.

Rezácová P, Kozísek M, Moy SF, Sieglová I, Joachimiak A, Machius M, Otwinowski Z.

Mol Microbiol. 2008 Aug;69(4):895-910. doi: 10.1111/j.1365-2958.2008.06318.x. Epub 2008 Jun 28.

16.

Cyclic AMP-independent catabolite repression in bacteria.

Saier MH Jr.

FEMS Microbiol Lett. 1996 May 1;138(2-3):97-103. Review.

PMID:
9026456
17.

Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation.

Loo CY, Mitrakul K, Voss IB, Hughes CV, Ganeshkumar N.

J Bacteriol. 2003 Nov;185(21):6241-54.

18.

Supplemental Content

Support Center