Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 569

1.

Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting.

Singh GP, Shrestha KM, Nepal A, Klabunde KJ, Sorensen CM.

Nanotechnology. 2014 Jul 4;25(26):265701. doi: 10.1088/0957-4484/25/26/265701. Epub 2014 Jun 11.

PMID:
24916183
2.

Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

Zhao W, Ai Z, Dai J, Zhang M.

PLoS One. 2014 Aug 4;9(8):e103671. doi: 10.1371/journal.pone.0103671. eCollection 2014.

3.

High-efficiency plasmon-enhanced and graphene-supported semiconductor/metal core-satellite hetero-nanocrystal photocatalysts for visible-light dye photodegradation and H2 production from water.

Zhang J, Wang P, Sun J, Jin Y.

ACS Appl Mater Interfaces. 2014 Nov 26;6(22):19905-13. doi: 10.1021/am505371g. Epub 2014 Nov 12.

PMID:
25369420
4.

Efficiently Enhancing Visible Light Photocatalytic Activity of Faceted TiO2 Nanocrystals by Synergistic Effects of Core-Shell Structured Au@CdS Nanoparticles and Their Selective Deposition.

Tong R, Liu C, Xu Z, Kuang Q, Xie Z, Zheng L.

ACS Appl Mater Interfaces. 2016 Aug 24;8(33):21326-33. doi: 10.1021/acsami.6b05563. Epub 2016 Aug 10.

PMID:
27479634
5.

Enhanced photocatalytic hydrogen-production performance of graphene-Zn(x)Cd(1-x)S composites by using an organic S source.

Li Q, Meng H, Yu J, Xiao W, Zheng Y, Wang J.

Chemistry. 2014 Jan 20;20(4):1176-85. doi: 10.1002/chem.201303446. Epub 2013 Dec 20. Erratum in: Chemistry. 2014 May 5;20(19):5528.

PMID:
24425678
6.

Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers.

Zhang Z, Li A, Cao SW, Bosman M, Li S, Xue C.

Nanoscale. 2014 May 21;6(10):5217-22. doi: 10.1039/c3nr06562f.

PMID:
24687039
7.

Enhanced photocatalytic H₂-production activity of graphene-modified titania nanosheets.

Xiang Q, Yu J, Jaroniec M.

Nanoscale. 2011 Sep 1;3(9):3670-8. doi: 10.1039/c1nr10610d. Epub 2011 Aug 8.

PMID:
21826308
8.

Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles.

Xiang Q, Yu J, Jaroniec M.

J Am Chem Soc. 2012 Apr 18;134(15):6575-8. doi: 10.1021/ja302846n. Epub 2012 Apr 4.

PMID:
22458309
9.

Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.

DeSario PA, Pietron JJ, DeVantier DE, Brintlinger TH, Stroud RM, Rolison DR.

Nanoscale. 2013 Sep 7;5(17):8073-83. doi: 10.1039/c3nr01429k.

PMID:
23877169
10.

Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheet-coated ZnO heterostructure photocatalyst.

Yuan YJ, Wang F, Hu B, Lu HW, Yu ZT, Zou ZG.

Dalton Trans. 2015 Jun 28;44(24):10997-1003. doi: 10.1039/c5dt00906e. Epub 2015 May 19.

PMID:
25989095
11.

Hierarchical Layered WS2 /Graphene-Modified CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution.

Xiang Q, Cheng F, Lang D.

ChemSusChem. 2016 May 10;9(9):996-1002. doi: 10.1002/cssc.201501702. Epub 2016 Apr 5.

PMID:
27059296
12.

Au/PtO nanoparticle-modified g-C3N4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light.

Jiang J, Yu J, Cao S.

J Colloid Interface Sci. 2016 Jan 1;461:56-63. doi: 10.1016/j.jcis.2015.08.076. Epub 2015 Sep 1.

PMID:
26397910
13.

MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation.

Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J.

ACS Nano. 2014 Jul 22;8(7):7078-87. doi: 10.1021/nn5019945. Epub 2014 Jun 13.

PMID:
24923678
14.

In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light.

Bhirud AP, Sathaye SD, Waichal RP, Ambekar JD, Park CJ, Kale BB.

Nanoscale. 2015 Mar 21;7(11):5023-34. doi: 10.1039/c4nr06435f.

PMID:
25697910
15.

Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi2WO6 nanosheets.

Low J, Yu J, Li Q, Cheng B.

Phys Chem Chem Phys. 2014 Jan 21;16(3):1111-20. doi: 10.1039/c3cp53820f. Epub 2013 Nov 29.

PMID:
24287866
16.

In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.

Ge MZ, Cao CY, Li SH, Tang YX, Wang LN, Qi N, Huang JY, Zhang KQ, Al-Deyab SS, Lai YK.

Nanoscale. 2016 Mar 7;8(9):5226-34. doi: 10.1039/c5nr08341a.

PMID:
26878901
17.

Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production.

Babu SG, Vinoth R, Kumar DP, Shankar MV, Chou HL, Vinodgopal K, Neppolian B.

Nanoscale. 2015 May 7;7(17):7849-57. doi: 10.1039/c5nr00504c.

PMID:
25853995
18.

Nanocomposites of AgInZnS and graphene nanosheets as efficient photocatalysts for hydrogen evolution.

Tang X, Chen W, Zu Z, Zang Z, Deng M, Zhu T, Sun K, Sun L, Xue J.

Nanoscale. 2015 Nov 28;7(44):18498-503. doi: 10.1039/c5nr05145b. Epub 2015 Sep 18.

PMID:
26383157
19.

Enhanced photocatalytic H₂-production activity of bicomponent NiO/TiO₂ composite nanofibers.

Li L, Cheng B, Wang Y, Yu J.

J Colloid Interface Sci. 2015 Jul 1;449:115-21. doi: 10.1016/j.jcis.2014.10.072. Epub 2014 Nov 27.

PMID:
25516356
20.

Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.

Fang J, Xu L, Zhang Z, Yuan Y, Cao S, Wang Z, Yin L, Liao Y, Xue C.

ACS Appl Mater Interfaces. 2013 Aug 28;5(16):8088-92. doi: 10.1021/am4021654. Epub 2013 Jul 24.

PMID:
23865712

Supplemental Content

Support Center