Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 351

1.

Pivotal role for the ubiquitin Y59-E51 loop in lysine 48 polyubiquitination.

Chong RA, Wu K, Spratt DE, Yang Y, Lee C, Nayak J, Xu M, Elkholi R, Tappin I, Li J, Hurwitz J, Brown BD, Chipuk JE, Chen ZJ, Sanchez R, Shaw GS, Huang L, Pan ZQ.

Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8434-9. doi: 10.1073/pnas.1407849111. Epub 2014 May 27.

2.

Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34.

Sadowski M, Suryadinata R, Lai X, Heierhorst J, Sarcevic B.

Mol Cell Biol. 2010 May;30(10):2316-29. doi: 10.1128/MCB.01094-09. Epub 2010 Mar 1.

3.

Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34.

Suryadinata R, Holien JK, Yang G, Parker MW, Papaleo E, Šarčević B.

Cell Cycle. 2013 Jun 1;12(11):1732-44. doi: 10.4161/cc.24818. Epub 2013 May 8.

4.

Ubiquitin-conjugating enzyme Cdc34 and ubiquitin ligase Skp1-cullin-F-box ligase (SCF) interact through multiple conformations.

Sandoval D, Hill S, Ziemba A, Lewis S, Kuhlman B, Kleiger G.

J Biol Chem. 2015 Jan 9;290(2):1106-18. doi: 10.1074/jbc.M114.615559. Epub 2014 Nov 25.

5.

A snapshot of ubiquitin chain elongation: lysine 48-tetra-ubiquitin slows down ubiquitination.

Kovacev J, Wu K, Spratt DE, Chong RA, Lee C, Nayak J, Shaw GS, Pan ZQ.

J Biol Chem. 2014 Mar 7;289(10):7068-81. doi: 10.1074/jbc.M113.530576. Epub 2014 Jan 24.

6.

Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate.

Wu K, Kovacev J, Pan ZQ.

Mol Cell. 2010 Mar 26;37(6):784-96. doi: 10.1016/j.molcel.2010.02.025.

7.

Human Cdc34 employs distinct sites to coordinate attachment of ubiquitin to a substrate and assembly of polyubiquitin chains.

Gazdoiu S, Yamoah K, Wu K, Pan ZQ.

Mol Cell Biol. 2007 Oct;27(20):7041-52. Epub 2007 Aug 13.

8.

Differential ubiquitin binding by the acidic loops of Ube2g1 and Ube2r1 enzymes distinguishes their Lys-48-ubiquitylation activities.

Choi YS, Lee YJ, Lee SY, Shi L, Ha JH, Cheong HK, Cheong C, Cohen RE, Ryu KS.

J Biol Chem. 2015 Jan 23;290(4):2251-63. doi: 10.1074/jbc.M114.624809. Epub 2014 Dec 3.

9.
10.

Multimodal mechanism of action for the Cdc34 acidic loop: a case study for why ubiquitin-conjugating enzymes have loops and tails.

Ziemba A, Hill S, Sandoval D, Webb K, Bennett EJ, Kleiger G.

J Biol Chem. 2013 Nov 29;288(48):34882-96. doi: 10.1074/jbc.M113.509190. Epub 2013 Oct 15.

11.

Molecular basis of Lys-63-linked polyubiquitination inhibition by the interaction between human deubiquitinating enzyme OTUB1 and ubiquitin-conjugating enzyme UBC13.

Sato Y, Yamagata A, Goto-Ito S, Kubota K, Miyamoto R, Nakada S, Fukai S.

J Biol Chem. 2012 Jul 27;287(31):25860-8. doi: 10.1074/jbc.M112.364752. Epub 2012 Jun 7.

12.

A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination.

Brzovic PS, Lissounov A, Christensen DE, Hoyt DW, Klevit RE.

Mol Cell. 2006 Mar 17;21(6):873-80.

13.

Association of the disordered C-terminus of CDC34 with a catalytically bound ubiquitin.

Spratt DE, Shaw GS.

J Mol Biol. 2011 Apr 1;407(3):425-38. doi: 10.1016/j.jmb.2011.01.047. Epub 2011 Feb 4.

PMID:
21296085
14.

Synergistic effect of two E2 ubiquitin conjugating enzymes in SCF(hFBH1) catalyzed polyubiquitination.

Kim JH, Choi JS, Kim S, Kim K, Myung PK, Park SG, Seo YS, Park BC.

BMB Rep. 2015 Jan;48(1):25-9.

15.

Modulation of K11-linkage formation by variable loop residues within UbcH5A.

Bosanac I, Phu L, Pan B, Zilberleyb I, Maurer B, Dixit VM, Hymowitz SG, Kirkpatrick DS.

J Mol Biol. 2011 May 6;408(3):420-31. doi: 10.1016/j.jmb.2011.03.011. Epub 2011 Mar 10.

PMID:
21396940
16.

The human Cdc34 carboxyl terminus contains a non-covalent ubiquitin binding activity that contributes to SCF-dependent ubiquitination.

Choi YS, Wu K, Jeong K, Lee D, Jeon YH, Choi BS, Pan ZQ, Ryu KS, Cheong C.

J Biol Chem. 2010 Jun 4;285(23):17754-62. doi: 10.1074/jbc.M109.090621. Epub 2010 Mar 30.

17.

Release of ubiquitin-charged Cdc34-S - Ub from the RING domain is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sic1.

Deffenbaugh AE, Scaglione KM, Zhang L, Moore JM, Buranda T, Sklar LA, Skowyra D.

Cell. 2003 Sep 5;114(5):611-22.

18.

Catalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin.

Rodrigo-Brenni MC, Foster SA, Morgan DO.

Mol Cell. 2010 Aug 27;39(4):548-59. doi: 10.1016/j.molcel.2010.07.027.

19.

Ubiquitin binding by a CUE domain regulates ubiquitin chain formation by ERAD E3 ligases.

Bagola K, von Delbrück M, Dittmar G, Scheffner M, Ziv I, Glickman MH, Ciechanover A, Sommer T.

Mol Cell. 2013 May 23;50(4):528-39. doi: 10.1016/j.molcel.2013.04.005. Epub 2013 May 9.

20.

Structural basis for the RING-catalyzed synthesis of K63-linked ubiquitin chains.

Branigan E, Plechanovová A, Jaffray EG, Naismith JH, Hay RT.

Nat Struct Mol Biol. 2015 Aug;22(8):597-602. doi: 10.1038/nsmb.3052. Epub 2015 Jul 6.

Supplemental Content

Support Center