Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Fumarate analogs act as allosteric inhibitors of the human mitochondrial NAD(P)+-dependent malic enzyme.

Hsieh JY, Liu JH, Yang PC, Lin CL, Liu GY, Hung HC.

PLoS One. 2014 Jun 9;9(6):e98385. doi: 10.1371/journal.pone.0098385.

2.

Effects of structural analogues of the substrate and allosteric regulator of the human mitochondrial NAD(P)+-dependent malic enzyme.

Su KL, Chang KY, Hung HC.

Bioorg Med Chem. 2009 Aug 1;17(15):5414-9. doi: 10.1016/j.bmc.2009.06.052.

PMID:
19595601
3.

Structural characteristics of the nonallosteric human cytosolic malic enzyme.

Hsieh JY, Li SY, Chen MC, Yang PC, Chen HY, Chan NL, Liu JH, Hung HC.

Biochim Biophys Acta. 2014 Oct;1844(10):1773-83. doi: 10.1016/j.bbapap.2014.06.019.

PMID:
24998673
4.

Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme.

Hsieh JY, Liu JH, Fang YW, Hung HC.

Biochem J. 2009 May 13;420(2):201-9. doi: 10.1042/BJ20090076.

PMID:
19236308
7.
9.

Functional role of fumarate site Glu59 involved in allosteric regulation and subunit-subunit interaction of human mitochondrial NAD(P)+-dependent malic enzyme.

Hsieh JY, Chiang YH, Chang KY, Hung HC.

FEBS J. 2009 Feb;276(4):983-94. doi: 10.1111/j.1742-4658.2008.06834.x.

10.
11.

Ascaris suum NAD-malic enzyme is activated by L-malate and fumarate binding to separate allosteric sites.

Karsten WE, Pais JE, Rao GS, Harris BG, Cook PF.

Biochemistry. 2003 Aug 19;42(32):9712-21.

PMID:
12911313
12.

Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme.

Hung HC, Chien YC, Hsieh JY, Chang GG, Liu GY.

Biochemistry. 2005 Sep 27;44(38):12737-45.

PMID:
16171388
13.

Allosteric substrate inhibition of Arabidopsis NAD-dependent malic enzyme 1 is released by fumarate.

Tronconi MA, Wheeler MC, Martinatto A, Zubimendi JP, Andreo CS, Drincovich MF.

Phytochemistry. 2015 Mar;111:37-47. doi: 10.1016/j.phytochem.2014.11.009.

PMID:
25433630
14.

Fumarate and cytosolic pH as modulators of the synthesis or consumption of C(4) organic acids through NADP-malic enzyme in Arabidopsis thaliana.

Arias CL, Andreo CS, Drincovich MF, Gerrard Wheeler MC.

Plant Mol Biol. 2013 Feb;81(3):297-307. doi: 10.1007/s11103-012-9999-6.

PMID:
23242919
15.

Long-range interaction between the enzyme active site and a distant allosteric site in the human mitochondrial NAD(P)+-dependent malic enzyme.

Hsieh JY, Su KL, Ho PT, Hung HC.

Arch Biochem Biophys. 2009 Jul 1;487(1):19-27. doi: 10.1016/j.abb.2009.05.007.

PMID:
19464998
16.

Mitochondrial NAD+-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control.

Pon J, Napoli E, Luckhart S, Giulivi C.

Malar J. 2011 Oct 26;10:318. doi: 10.1186/1475-2875-10-318.

17.

Three different and tissue-specific NAD-malic enzymes generated by alternative subunit association in Arabidopsis thaliana.

Tronconi MA, Maurino VG, Andreo CS, Drincovich MF.

J Biol Chem. 2010 Apr 16;285(16):11870-9. doi: 10.1074/jbc.M109.097477.

18.

Functional roles of the tetramer organization of malic enzyme.

Hsieh JY, Chen SH, Hung HC.

J Biol Chem. 2009 Jul 3;284(27):18096-105. doi: 10.1074/jbc.M109.005082.

19.

Differential fumarate binding to Arabidopsis NAD+-malic enzymes 1 and -2 produces an opposite activity modulation.

Tronconi MA, Gerrard Wheeler MC, Drincovich MF, Andreo CS.

Biochimie. 2012 Jun;94(6):1421-30. doi: 10.1016/j.biochi.2012.03.017.

PMID:
22487558
Items per page

Supplemental Content

Support Center