Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

General coalescence conditions for the exact wave functions. II. Higher-order relations for many-particle systems.

Kurokawa YI, Nakashima H, Nakatsuji H.

J Chem Phys. 2014 Jun 7;140(21):214103. doi: 10.1063/1.4879266.

PMID:
24907986
2.

General coalescence conditions for the exact wave functions: higher-order relations for two-particle systems.

Kurokawa YI, Nakashima H, Nakatsuji H.

J Chem Phys. 2013 Jul 28;139(4):044114. doi: 10.1063/1.4816281.

PMID:
23901967
3.

Second order coalescence conditions of molecular wave functions.

Tew DP.

J Chem Phys. 2008 Jul 7;129(1):014104. doi: 10.1063/1.2945900.

PMID:
18624467
4.

Relativistic explicit correlation: coalescence conditions and practical suggestions.

Li Z, Shao S, Liu W.

J Chem Phys. 2012 Apr 14;136(14):144117. doi: 10.1063/1.3702631.

PMID:
22502511
5.

Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

Nakatsuji H.

Acc Chem Res. 2012 Sep 18;45(9):1480-90. doi: 10.1021/ar200340j. Epub 2012 Jun 11. Review.

PMID:
22686372
6.

Scalar relativistic explicitly correlated R12 methods.

Bischoff FA, Valeev EF, Klopper W, Janssen CL.

J Chem Phys. 2010 Jun 7;132(21):214104. doi: 10.1063/1.3417984.

PMID:
20528015
7.

Electron-nucleus cusp correction scheme for the relativistic zeroth-order regular approximation quantum Monte Carlo method.

Nakatsuka Y, Nakajima T, Hirao K.

J Chem Phys. 2010 May 7;132(17):174108. doi: 10.1063/1.3418557.

PMID:
20459157
9.
10.
11.

Exact expressions for ensemble functionals from particle number dependence.

Joubert DP.

J Chem Phys. 2012 May 7;136(17):174113. doi: 10.1063/1.4707932.

PMID:
22583216
12.

Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom.

Bischoff FA, Harrison RJ, Valeev EF.

J Chem Phys. 2012 Sep 14;137(10):104103. doi: 10.1063/1.4747538.

PMID:
22979846
13.

Dynamical-systems approach to relativistic nonlinear wave-particle interaction in collisionless plasmas.

Osmane A, Hamza AM.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056410. Epub 2012 May 18.

PMID:
23004882
14.

Communication: Three-electron coalescence points in two and three dimensions.

Loos PF, Bloomfield NJ, Gill PM.

J Chem Phys. 2015 Nov 14;143(18):181101. doi: 10.1063/1.4935374.

PMID:
26567635
15.

Analysis of multiconfigurational wave functions in terms of hole-particle distributions.

Luzanov AV, Prezhdo OV.

J Chem Phys. 2006 Jun 14;124(22):224109.

PMID:
16784265
16.

How accurately does the free complement wave function of a helium atom satisfy the Schrödinger equation?

Nakashima H, Nakatsuji H.

Phys Rev Lett. 2008 Dec 12;101(24):240406. Epub 2008 Dec 12.

PMID:
19113607
17.
18.

Solving the Schrödinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method.

Kurokawa YI, Nakashima H, Nakatsuji H.

Phys Chem Chem Phys. 2008 Aug 14;10(30):4486-94. doi: 10.1039/b806979b. Epub 2008 Jun 19.

PMID:
18654690
19.

Coalescence of particle-laden drops with a planar oil-water interface.

Harbottle D, Bueno P, Isaksson R, Kretzschmar I.

J Colloid Interface Sci. 2011 Oct 1;362(1):235-41. doi: 10.1016/j.jcis.2011.05.077. Epub 2011 Jun 6.

PMID:
21737091
20.

On the local representation of the electronic momentum operator in atomic systems.

Bohórquez HJ, Boyd RJ.

J Chem Phys. 2008 Jul 14;129(2):024110. doi: 10.1063/1.2953698.

PMID:
18624519

Supplemental Content

Support Center