Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 216

1.

Generation of a biomimetic human artificial cornea model using Wharton's jelly mesenchymal stem cells.

Garzón I, Martín-Piedra MA, Alfonso-Rodríguez C, González-Andrades M, Carriel V, Martínez-Gómez C, Campos A, Alaminos M.

Invest Ophthalmol Vis Sci. 2014 Jun 6;55(7):4073-83. doi: 10.1167/iovs.14-14304.

PMID:
24906855
2.

Wharton's jelly stem cells: a novel cell source for oral mucosa and skin epithelia regeneration.

Garzón I, Miyake J, González-Andrades M, Carmona R, Carda C, Sánchez-Quevedo Mdel C, Campos A, Alaminos M.

Stem Cells Transl Med. 2013 Aug;2(8):625-32. doi: 10.5966/sctm.2012-0157. Epub 2013 Jul 1.

3.

Ex vivo and in vivo modulatory effects of umbilical cord Wharton's jelly stem cells on human oral mucosa stroma substitutes.

Alfonso-Rodríguez CA, González-Andrades E, Jaimes-Parra BD, Fernández-Valadés R, Campos A, Sánchez-Quevedo MC, Alaminos M, Garzón I.

Histol Histopathol. 2015 Nov;30(11):1321-32. doi: 10.14670HH-11-628. Epub 2015 May 13.

PMID:
25967581
4.

Propagation and differentiation of human Wharton's jelly stem cells on three-dimensional nanofibrous scaffolds.

Gauthaman K, Fong CY, Venugopal JR, Biswas A, Ramakrishna S, Bongso A.

Methods Mol Biol. 2013;1058:1-23. doi: 10.1007/7651_2012_1.

PMID:
23526437
5.

Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage.

Liu S, Hou KD, Yuan M, Peng J, Zhang L, Sui X, Zhao B, Xu W, Wang A, Lu S, Guo Q.

J Biosci Bioeng. 2014 Feb;117(2):229-35. doi: 10.1016/j.jbiosc.2013.07.001. Epub 2013 Jul 27.

PMID:
23899897
6.

Application potential of mesenchymal stem cells derived from Wharton's jelly in liver tissue engineering.

Zhang L, Zhao YH, Guan Z, Ye JS, de Isla N, Stoltz JF.

Biomed Mater Eng. 2015;25(1 Suppl):137-43. doi: 10.3233/BME-141232. Review.

PMID:
25538064
7.

Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment.

Fong CY, Subramanian A, Gauthaman K, Venugopal J, Biswas A, Ramakrishna S, Bongso A.

Stem Cell Rev. 2012 Mar;8(1):195-209. doi: 10.1007/s12015-011-9289-8.

PMID:
21671058
8.

Human umbilical cord Wharton's jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells.

Subramanian A, Shu-Uin G, Kae-Siang N, Gauthaman K, Biswas A, Choolani M, Bongso A, Chui-Yee F.

J Cell Biochem. 2012 Jun;113(6):1886-95. doi: 10.1002/jcb.24057.

PMID:
22234854
9.

Isolation and characterization of canine Wharton's jelly-derived mesenchymal stem cells.

Seo MS, Park SB, Kang KS.

Cell Transplant. 2012;21(7):1493-502.

PMID:
22732242
10.

Human Wharton's jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells.

Lin HD, Fong CY, Biswas A, Choolani M, Bongso A.

Stem Cell Rev. 2014 Aug;10(4):573-86. doi: 10.1007/s12015-014-9514-3.

PMID:
24789672
11.

Human umbilical cord Wharton's jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo.

Fong CY, Gauthaman K, Cheyyatraivendran S, Lin HD, Biswas A, Bongso A.

J Cell Biochem. 2012 Feb;113(2):658-68. doi: 10.1002/jcb.23395.

PMID:
21976004
12.
13.

Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells.

Karadas O, Yucel D, Kenar H, Torun Kose G, Hasirci V.

J Tissue Eng Regen Med. 2014 Jul;8(7):534-45. doi: 10.1002/term.1555. Epub 2012 Jun 28.

PMID:
22744919
14.

Expression of epithelial markers by human umbilical cord stem cells. A topographical analysis.

Garzón I, Alfonso-Rodríguez CA, Martínez-Gómez C, Carriel V, Martin-Piedra MA, Fernández-Valadés R, Sánchez-Quevedo MC, Alaminos M.

Placenta. 2014 Dec;35(12):994-1000. doi: 10.1016/j.placenta.2014.09.007. Epub 2014 Sep 23.

PMID:
25284359
15.

In vitro simulation of corneal epithelium microenvironment induces a corneal epithelial-like cell phenotype from human adipose tissue mesenchymal stem cells.

Nieto-Miguel T, Galindo S, Reinoso R, Corell A, Martino M, Pérez-Simón JA, Calonge M.

Curr Eye Res. 2013 Sep;38(9):933-44. doi: 10.3109/02713683.2013.802809. Epub 2013 Jun 14.

PMID:
23767776
16.

In vitro differentiation process of human Wharton's jelly mesenchymal stem cells to male germ cells in the presence of gonadal and non-gonadal conditioned media with retinoic acid.

Amidi F, Ataie Nejad N, Agha Hoseini M, Nayernia K, Mazaheri Z, Yamini N, Saeednia S.

In Vitro Cell Dev Biol Anim. 2015 Nov;51(10):1093-101. doi: 10.1007/s11626-015-9929-4. Epub 2015 Oct 1.

PMID:
26427713
17.

Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells.

Canha-Gouveia A, Rita Costa-Pinto A, Martins AM, Silva NA, Faria S, Sousa RA, Salgado AJ, Sousa N, Reis RL, Neves NM.

Biofabrication. 2015 Sep 3;7(3):035009. doi: 10.1088/1758-5090/7/3/035009.

PMID:
26335618
18.

Cellular activity of Wharton's Jelly-derived mesenchymal stem cells on electrospun fibrous and solvent-cast film scaffolds.

Bagher Z, Ebrahimi-Barough S, Azami M, Safa M, Joghataei MT.

J Biomed Mater Res A. 2016 Jan;104(1):218-26. doi: 10.1002/jbm.a.35555. Epub 2015 Sep 18.

PMID:
26265047
19.

Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers.

Bagher Z, Azami M, Ebrahimi-Barough S, Mirzadeh H, Solouk A, Soleimani M, Ai J, Nourani MR, Joghataei MT.

Mol Neurobiol. 2016 May;53(4):2397-408. doi: 10.1007/s12035-015-9199-x. Epub 2015 May 24.

PMID:
26001761
20.

Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells.

Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY, Xie QD, Huang TH.

Chin Med J (Engl). 2005 Dec 5;118(23):1987-93.

PMID:
16336835

Supplemental Content

Support Center