Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

In situ hydrogel constructed by starch-based nanoparticles via a Schiff base reaction.

Li Y, Liu C, Tan Y, Xu K, Lu C, Wang P.

Carbohydr Polym. 2014 Sep 22;110:87-94. doi: 10.1016/j.carbpol.2014.03.058. Epub 2014 Mar 30.

PMID:
24906732
2.

Formation of hybrid hydrogels consisting of tripeptide and different silver nanoparticle-capped ligands: modulation of the mechanical strength of gel phase materials.

Nanda J, Adhikari B, Basak S, Banerjee A.

J Phys Chem B. 2012 Oct 11;116(40):12235-44. doi: 10.1021/jp306262t. Epub 2012 Sep 28.

PMID:
22962848
3.

Fabrication and evaluation of the novel reduction-sensitive starch nanoparticles for controlled drug release.

Yang J, Huang Y, Gao C, Liu M, Zhang X.

Colloids Surf B Biointerfaces. 2014 Mar 1;115:368-76. doi: 10.1016/j.colsurfb.2013.12.007. Epub 2013 Dec 19.

PMID:
24463097
4.

N-succinyl chitosan-dialdehyde starch hybrid hydrogels for biomedical applications.

Kamoun EA.

J Adv Res. 2016 Jan;7(1):69-77. doi: 10.1016/j.jare.2015.02.002. Epub 2015 Feb 25.

5.

Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering.

Fan M, Ma Y, Tan H, Jia Y, Zou S, Guo S, Zhao M, Huang H, Ling Z, Chen Y, Hu X.

Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:67-74. doi: 10.1016/j.msec.2016.09.068. Epub 2016 Sep 30.

PMID:
27987759
6.

Peptide-based hydrogel nanoparticles as effective drug delivery agents.

Ischakov R, Adler-Abramovich L, Buzhansky L, Shekhter T, Gazit E.

Bioorg Med Chem. 2013 Jun 15;21(12):3517-22. doi: 10.1016/j.bmc.2013.03.012. Epub 2013 Mar 21.

PMID:
23566763
7.

Enabling Surgical Placement of Hydrogels Through Achieving Paste-Like Rheological Behavior in Hydrogel Precursor Solutions.

Beck EC, Lohman BL, Tabakh DB, Kieweg SL, Gehrke SH, Berkland CJ, Detamore MS.

Ann Biomed Eng. 2015 Oct;43(10):2569-76. doi: 10.1007/s10439-015-1277-8. Epub 2015 Feb 18.

8.

Micro-structured smart hydrogels with enhanced protein loading and release efficiency.

Zhang JT, Petersen S, Thunga M, Leipold E, Weidisch R, Liu X, Fahr A, Jandt KD.

Acta Biomater. 2010 Apr;6(4):1297-306. doi: 10.1016/j.actbio.2009.11.005. Epub 2009 Nov 12.

PMID:
19913647
9.

Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites.

Frimpong RA, Fraser S, Hilt JZ.

J Biomed Mater Res A. 2007 Jan;80(1):1-6.

PMID:
16941587
10.

Potential of an injectable chitosan/starch/beta-glycerol phosphate hydrogel for sustaining normal chondrocyte function.

Ngoenkam J, Faikrua A, Yasothornsrikul S, Viyoch J.

Int J Pharm. 2010 May 31;391(1-2):115-24. doi: 10.1016/j.ijpharm.2010.02.028. Epub 2010 Mar 3.

PMID:
20206248
11.

Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability.

Ye L, Zhang Y, Wang Q, Zhou X, Yang B, Ji F, Dong D, Gao L, Cui Y, Yao F.

ACS Appl Mater Interfaces. 2016 Jun 22;8(24):15710-23. doi: 10.1021/acsami.6b03098. Epub 2016 Jun 13.

PMID:
27249052
12.

Fluxgate magnetorelaxometry: a new approach to study the release properties of hydrogel cylinders and microspheres.

Wöhl-Bruhn S, Heim E, Schwoerer A, Bertz A, Harling S, Menzel H, Schilling M, Ludwig F, Bunjes H.

Int J Pharm. 2012 Oct 15;436(1-2):677-84. doi: 10.1016/j.ijpharm.2012.07.021. Epub 2012 Jul 20.

PMID:
22820133
13.

Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation.

Liang YY, Zhang LM, Jiang W, Li W.

Chemphyschem. 2007 Nov 12;8(16):2367-72.

PMID:
17926314
14.

Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin.

Yuan L, Wu Y, Gu QS, El-Hamshary H, El-Newehy M, Mo X.

Int J Biol Macromol. 2017 Mar;96:569-577. doi: 10.1016/j.ijbiomac.2016.12.058. Epub 2016 Dec 23.

PMID:
28017764
15.

Electro-response characteristic of starch hydrogel crosslinked with Glutaraldehyde.

Gao LX, Chen JL, Han XW, Yan SX, Zhang Y, Zhang WQ, Gao ZW.

J Biomater Sci Polym Ed. 2015;26(9):545-57. doi: 10.1080/09205063.2015.1037587. Epub 2015 May 5.

PMID:
25849098
16.

Preparation of hybrid hydrogel containing Ag nanoparticles by a green in situ reduction method.

Xia B, Cui Q, He F, Li L.

Langmuir. 2012 Jul 31;28(30):11188-94. doi: 10.1021/la302011x. Epub 2012 Jul 17.

PMID:
22770209
17.

Design of Macroscopically Ordered Liquid Crystalline Hydrogel Columns Knitted with Nanosilver for Topical Applications.

Lali Raveendran R, Kumar Sasidharan N, Devaki SJ.

Bioconjug Chem. 2017 Mar 1. doi: 10.1021/acs.bioconjchem.6b00706. [Epub ahead of print]

PMID:
28221765
18.

Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide.

Meenach SA, Anderson AA, Suthar M, Anderson KW, Hilt JZ.

J Biomed Mater Res A. 2009 Dec;91(3):903-9. doi: 10.1002/jbm.a.32322.

PMID:
19090484
19.

Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration.

Nguyen TP, Lee BT.

J Biomater Appl. 2012 Sep;27(3):311-21. doi: 10.1177/0885328211404265. Epub 2011 Jun 16.

PMID:
21680610
20.

Synthesis and characterization of novel stimuli-responsive hydrogels based on starch and L-aspartic acid.

Vakili MR, Rahneshin N.

Carbohydr Polym. 2013 Nov 6;98(2):1624-30. doi: 10.1016/j.carbpol.2013.08.016. Epub 2013 Aug 14.

PMID:
24053849

Supplemental Content

Support Center