Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.

PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating.

Zaydman MA, Cui J.

Front Physiol. 2014 May 27;5:195. doi: 10.3389/fphys.2014.00195. eCollection 2014. Review.

2.

Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.

Zaydman MA, Silva JR, Delaloye K, Li Y, Liang H, Larsson HP, Shi J, Cui J.

Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13180-5. doi: 10.1073/pnas.1305167110. Epub 2013 Jul 16.

3.

Bimodal regulation of an Elk subfamily K+ channel by phosphatidylinositol 4,5-bisphosphate.

Li X, Anishkin A, Liu H, van Rossum DB, Chintapalli SV, Sassic JK, Gallegos D, Pivaroff-Ward K, Jegla T.

J Gen Physiol. 2015 Nov;146(5):357-74. doi: 10.1085/jgp.201511491.

4.

Dynamic PIP2 interactions with voltage sensor elements contribute to KCNQ2 channel gating.

Zhang Q, Zhou P, Chen Z, Li M, Jiang H, Gao Z, Yang H.

Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20093-8. doi: 10.1073/pnas.1312483110. Epub 2013 Nov 25.

5.

Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate.

Li Y, Gamper N, Hilgemann DW, Shapiro MS.

J Neurosci. 2005 Oct 26;25(43):9825-35.

6.

Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels.

Cui J.

Biophys J. 2016 Jan 5;110(1):14-25. doi: 10.1016/j.bpj.2015.11.023. Review.

7.

Regulation of KCNQ/Kv7 family voltage-gated K+ channels by lipids.

Taylor KC, Sanders CR.

Biochim Biophys Acta. 2017 Apr;1859(4):586-597. doi: 10.1016/j.bbamem.2016.10.023. Epub 2016 Nov 4. Review.

PMID:
27818172
8.

Opposite Effects of the S4-S5 Linker and PIP(2) on Voltage-Gated Channel Function: KCNQ1/KCNE1 and Other Channels.

Choveau FS, Abderemane-Ali F, Coyan FC, Es-Salah-Lamoureux Z, Baró I, Loussouarn G.

Front Pharmacol. 2012 Jul 5;3:125. doi: 10.3389/fphar.2012.00125. eCollection 2012.

9.

Phosphorylation regulates the sensitivity of voltage-gated Kv7.2 channels towards phosphatidylinositol-4,5-bisphosphate.

Salzer I, Erdem FA, Chen WQ, Heo S, Koenig X, Schicker KW, Kubista H, Lubec G, Boehm S, Yang JW.

J Physiol. 2017 Feb 1;595(3):759-776. doi: 10.1113/JP273274. Epub 2016 Nov 7.

10.

Regulation of Voltage-Activated K(+) Channel Gating by Transmembrane β Subunits.

Sun X, Zaydman MA, Cui J.

Front Pharmacol. 2012 Apr 17;3:63. doi: 10.3389/fphar.2012.00063. eCollection 2012.

11.

Emerging issues of connexin channels: biophysics fills the gap.

Harris AL.

Q Rev Biophys. 2001 Aug;34(3):325-472. Review. Erratum in: Q Rev Biophys 2002 Feb;35(1):109.

PMID:
11838236
12.

Two distinct effects of PIP2 underlie auxiliary subunit-dependent modulation of Slo1 BK channels.

Tian Y, Ullrich F, Xu R, Heinemann SH, Hou S, Hoshi T.

J Gen Physiol. 2015 Apr;145(4):331-43. doi: 10.1085/jgp.201511363.

13.

The Voltage Activation of Cortical KCNQ Channels Depends on Global PIP2 Levels.

Kim KS, Duignan KM, Hawryluk JM, Soh H, Tzingounis AV.

Biophys J. 2016 Mar 8;110(5):1089-98. doi: 10.1016/j.bpj.2016.01.006.

14.
15.

Functional diversity of potassium channel voltage-sensing domains.

Islas LD.

Channels (Austin). 2016;10(3):202-13. doi: 10.1080/19336950.2016.1141842. Epub 2016 Jan 21. Review.

16.
17.
18.

PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels.

Lopes CM, Rohács T, Czirják G, Balla T, Enyedi P, Logothetis DE.

J Physiol. 2005 Apr 1;564(Pt 1):117-29. Epub 2005 Jan 27.

19.

Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq.

Suh BC, Horowitz LF, Hirdes W, Mackie K, Hille B.

J Gen Physiol. 2004 Jun;123(6):663-83.

20.

KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain.

Nakajo K, Kubo Y.

J Physiol. 2015 Jun 15;593(12):2617-25. doi: 10.1113/jphysiol.2014.287672. Epub 2015 Feb 16. Review.

Supplemental Content

Support Center