Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses.

Tang Y, Cao Y, Gao Z, Ou Z, Wang Y, Qiu J, Zheng Y.

PLoS One. 2014 Jun 5;9(6):e98830. doi: 10.1371/journal.pone.0098830. eCollection 2014. Erratum in: PLoS One. 2014;9(8):e107337.

2.

The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana.

Gayomba SR, Jung HI, Yan J, Danku J, Rutzke MA, Bernal M, Krämer U, Kochian LV, Salt DE, Vatamaniuk OK.

Metallomics. 2013 Sep;5(9):1262-75. doi: 10.1039/c3mt00111c.

PMID:
23835944
3.

Subcellular targeting of bacterial CusF enhances Cu accumulation and alters root to shoot Cu translocation in arabidopsis.

Yu P, Yuan J, Deng X, Ma M, Zhang H.

Plant Cell Physiol. 2014 Sep;55(9):1568-81. doi: 10.1093/pcp/pcu087. Epub 2014 Jun 20.

PMID:
24951313
4.

Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis.

Huang J, Zhang Y, Peng JS, Zhong C, Yi HY, Ow DW, Gong JM.

Plant Physiol. 2012 Apr;158(4):1779-88. doi: 10.1104/pp.111.192872. Epub 2012 Feb 7.

5.

Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

Lin YF, Hassan Z, Talukdar S, Schat H, Aarts MG.

PLoS One. 2016 Mar 1;11(3):e0149750. doi: 10.1371/journal.pone.0149750. eCollection 2016.

6.

Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress.

Wang H, Zhou L, Fu Y, Cheung MY, Wong FL, Phang TH, Sun Z, Lam HM.

Plant Cell Environ. 2012 Nov;35(11):1932-47. doi: 10.1111/j.1365-3040.2012.02526.x. Epub 2012 May 22.

7.
8.

Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens.

Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M, Kaskie M, Ebbs S, Kochian LV, Ma JF.

Plant J. 2011 Jun;66(5):852-62. doi: 10.1111/j.1365-313X.2011.04548.x. Epub 2011 Apr 4.

9.

The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury.

Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y.

Plant J. 2012 Jan;69(2):278-88. doi: 10.1111/j.1365-313X.2011.04789.x. Epub 2011 Oct 25.

10.

The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants.

Farinati S, DalCorso G, Varotto S, Furini A.

New Phytol. 2010 Mar;185(4):964-78. doi: 10.1111/j.1469-8137.2009.03132.x. Epub 2009 Dec 21.

11.

Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance.

Hugouvieux V, Dutilleul C, Jourdain A, Reynaud F, Lopez V, Bourguignon J.

Plant Physiol. 2009 Oct;151(2):768-81. doi: 10.1104/pp.109.144808. Epub 2009 Aug 26.

12.

Characterization of a Type 1 Metallothionein Gene from the Stresses-Tolerant Plant Ziziphus jujuba.

Yang M, Zhang F, Wang F, Dong Z, Cao Q, Chen M.

Int J Mol Sci. 2015 Jul 23;16(8):16750-62. doi: 10.3390/ijms160816750.

13.

Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants.

Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY.

Plant Biotechnol J. 2008 Jun;6(5):486-503. doi: 10.1111/j.1467-7652.2008.00336.x. Epub 2008 Mar 31.

14.

Molecular cloning and characterization of a Brassica juncea yellow stripe-like gene, BjYSL7, whose overexpression increases heavy metal tolerance of tobacco.

Wang JW, Li Y, Zhang YX, Chai TY.

Plant Cell Rep. 2013 May;32(5):651-62. doi: 10.1007/s00299-013-1398-1. Epub 2013 Feb 21.

PMID:
23430174
15.

Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.

Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY.

Plant J. 2011 Oct;68(2):302-13. doi: 10.1111/j.1365-313X.2011.04687.x. Epub 2011 Jul 26.

16.

Isolation and characterization of a novel cadmium-regulated Yellow Stripe-Like transporter (SnYSL3) in Solanum nigrum.

Feng S, Tan J, Zhang Y, Liang S, Xiang S, Wang H, Chai T.

Plant Cell Rep. 2017 Feb;36(2):281-296. doi: 10.1007/s00299-016-2079-7. Epub 2016 Nov 19.

PMID:
27866260
17.

Cucumber metal tolerance protein CsMTP9 is a plasma membrane H⁺-coupled antiporter involved in the Mn²⁺ and Cd²⁺ efflux from root cells.

Migocka M, Papierniak A, Kosieradzka A, Posyniak E, Maciaszczyk-Dziubinska E, Biskup R, Garbiec A, Marchewka T.

Plant J. 2015 Dec;84(6):1045-58. doi: 10.1111/tpj.13056. Epub 2015 Dec 10.

18.
19.

The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings.

Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Guisez Y, Colpaert J, Vangronsveld J.

J Plant Physiol. 2011 Mar 1;168(4):309-16. doi: 10.1016/j.jplph.2010.07.010. Epub 2010 Sep 15.

PMID:
20828869
20.

Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast.

Yang J, Wang Y, Liu G, Yang C, Li C.

Mol Biol Rep. 2011 Mar;38(3):1567-74. doi: 10.1007/s11033-010-0265-1. Epub 2010 Sep 12.

PMID:
20835888

Supplemental Content

Support Center