Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Clinical application of navigation surgery using augmented reality in the abdominal field.

Okamoto T, Onda S, Yanaga K, Suzuki N, Hattori A.

Surg Today. 2015 Apr;45(4):397-406. doi: 10.1007/s00595-014-0946-9. Epub 2014 Jun 6. Review.

PMID:
24898629
2.

Navigation surgery using an augmented reality for pancreatectomy.

Okamoto T, Onda S, Yasuda J, Yanaga K, Suzuki N, Hattori A.

Dig Surg. 2015;32(2):117-23. doi: 10.1159/000371860. Epub 2015 Mar 6.

PMID:
25766302
3.

Short rigid scope and stereo-scope designed specifically for open abdominal navigation surgery: clinical application for hepatobiliary and pancreatic surgery.

Onda S, Okamoto T, Kanehira M, Fujioka S, Suzuki N, Hattori A, Yanaga K.

J Hepatobiliary Pancreat Sci. 2013 Apr;20(4):448-53. doi: 10.1007/s00534-012-0582-y.

PMID:
23269461
4.

Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery.

Sugimoto M, Yasuda H, Koda K, Suzuki M, Yamazaki M, Tezuka T, Kosugi C, Higuchi R, Watayo Y, Yagawa Y, Uemura S, Tsuchiya H, Azuma T.

J Hepatobiliary Pancreat Sci. 2010 Sep;17(5):629-36. doi: 10.1007/s00534-009-0199-y. Epub 2009 Oct 2.

PMID:
19798463
5.

Development of navigation systems for image-guided laparoscopic tumor resections in liver surgery.

Lange T, Hünerbein M, Eulenstein S, Beller S, Schlag PM.

Recent Results Cancer Res. 2006;167:13-36. Review. No abstract available.

PMID:
17044294
6.

Identification of inferior pancreaticoduodenal artery during pancreaticoduodenectomy using augmented reality-based navigation system.

Onda S, Okamoto T, Kanehira M, Suzuki F, Ito R, Fujioka S, Suzuki N, Hattori A, Yanaga K.

J Hepatobiliary Pancreat Sci. 2014 Apr;21(4):281-7. doi: 10.1002/jhbp.25. Epub 2013 Aug 22.

PMID:
23970384
7.

Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.

Wang J, Suenaga H, Liao H, Hoshi K, Yang L, Kobayashi E, Sakuma I.

Comput Med Imaging Graph. 2015 Mar;40:147-59. doi: 10.1016/j.compmedimag.2014.11.003. Epub 2014 Nov 18.

PMID:
25465067
8.

Hybrid navigation interface for orthopedic and trauma surgery.

Traub J, Stefan P, Heining SM, Sielhorst T, Riquarts C, Euler E, Navab N.

Med Image Comput Comput Assist Interv. 2006;9(Pt 1):373-80.

PMID:
17354912
9.

Console-integrated stereoscopic OsiriX 3D volume-rendered images for da Vinci colorectal robotic surgery.

Volonté F, Pugin F, Buchs NC, Spaltenstein J, Hagen M, Ratib O, Morel P.

Surg Innov. 2013 Apr;20(2):158-63. doi: 10.1177/1553350612446353. Epub 2012 May 1.

PMID:
22549904
10.

Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display.

Chen X, Xu L, Wang Y, Wang H, Wang F, Zeng X, Wang Q, Egger J.

J Biomed Inform. 2015 Jun;55:124-31. doi: 10.1016/j.jbi.2015.04.003. Epub 2015 Apr 13.

11.

TREK: an integrated system architecture for intraoperative cone-beam CT-guided surgery.

Uneri A, Schafer S, Mirota DJ, Nithiananthan S, Otake Y, Taylor RH, Gallia GL, Khanna AJ, Lee S, Reh DD, Siewerdsen JH.

Int J Comput Assist Radiol Surg. 2012 Jan;7(1):159-73. doi: 10.1007/s11548-011-0636-7. Epub 2011 Jul 9. Erratum in: Int J Comput Assist Radiol Surg. 2012 Jan;7(1):175. Gallia, G L [added]; Khanna A J [added]; Lee, S [added]; Reh, D D [added].

PMID:
21744085
12.

[Computer-assisted surgery].

Micali S.

Urologia. 2011 Jan-Mar;78(1):52-9. Review. Italian.

PMID:
21452161
13.

Technology improvements for image-guided and minimally invasive spine procedures.

Cleary K, Clifford M, Stoianovici D, Freedman M, Mun SK, Watson V.

IEEE Trans Inf Technol Biomed. 2002 Dec;6(4):249-61. Review.

PMID:
15224839
14.

Indications and limitations of intraoperative navigation in maxillofacial surgery.

Heiland M, Habermann CR, Schmelzle R.

J Oral Maxillofac Surg. 2004 Sep;62(9):1059-63.

PMID:
15346354
15.

Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms.

Moglia A, Turini G, Ferrari V, Ferrari M, Mosca F.

Stud Health Technol Inform. 2011;163:379-85.

PMID:
21335823
16.

Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.

Wen R, Tay WL, Nguyen BP, Chng CB, Chui CK.

Comput Methods Programs Biomed. 2014 Sep;116(2):68-80. doi: 10.1016/j.cmpb.2013.12.018. Epub 2014 Jan 2.

PMID:
24438993
17.

Current progress on augmented reality visualization in endoscopic surgery.

Nakamoto M, Ukimura O, Faber K, Gill IS.

Curr Opin Urol. 2012 Mar;22(2):121-6. doi: 10.1097/MOU.0b013e3283501774. Review.

PMID:
22249372
18.

New augmented reality and robotic based methods for head-surgery.

Wörn H, Aschke M, Kahrs LA.

Int J Med Robot. 2005 Sep;1(3):49-56.

PMID:
17518390
19.

[Image-guided endoscopic sinus surgery: a comparison of two navigation systems].

Seno S, Suzuki M, Sakurai H, Kitanishi T, Nakajima D, Sonoda S, Owaki S, Fukui J, Hoshi J, Hanamitsu M, Shimizu T.

Nihon Jibiinkoka Gakkai Kaiho. 2005 Nov;108(11):1101-9. Japanese.

PMID:
16359005
20.

EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.

Megali G, Ferrari V, Freschi C, Morabito B, Cavallo F, Turini G, Troia E, Cappelli C, Pietrabissa A, Tonet O, Cuschieri A, Dario P, Mosca F.

Int J Med Robot. 2008 Sep;4(3):242-51. doi: 10.1002/rcs.203.

PMID:
18698670

Supplemental Content

Support Center