Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

Sequential in vivo imaging of osteogenic stem/progenitor cells during fracture repair.

Park D, Spencer JA, Lin CP, Scadden DT.

J Vis Exp. 2014 May 23;(87). doi: 10.3791/51289.

2.

Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche.

Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM.

Eur Cell Mater. 2012 Jan 12;23:13-27.

3.

Cell surface expression of stem cell antigen-1 (Sca-1) distinguishes osteo-, chondro-, and adipoprogenitors in fetal mouse calvaria.

Steenhuis P, Pettway GJ, Ignelzi MA Jr.

Calcif Tissue Int. 2008 Jan;82(1):44-56. doi: 10.1007/s00223-007-9083-4. Epub 2008 Jan 4.

PMID:
18175035
4.

[Recruitment of osteogenic cells to bone formation sites during development and fracture repair - German Version].

Böhm AM, Dirckx N, Maes C.

Z Rheumatol. 2016 Apr;75(3):316-21. doi: 10.1007/s00393-016-0065-7. Review. German.

PMID:
27003859
5.

Influence of defective bone marrow osteogenesis on fracture repair in an experimental model of senile osteoporosis.

Egermann M, Heil P, Tami A, Ito K, Janicki P, Von Rechenberg B, Hofstetter W, Richards PJ.

J Orthop Res. 2010 Jun;28(6):798-804. doi: 10.1002/jor.21041.

6.

Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system.

Schantz JT, Teoh SH, Lim TC, Endres M, Lam CX, Hutmacher DW.

Tissue Eng. 2003;9 Suppl 1:S113-26.

PMID:
14511475
7.

Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing.

Matthews BG, Grcevic D, Wang L, Hagiwara Y, Roguljic H, Joshi P, Shin DG, Adams DJ, Kalajzic I.

J Bone Miner Res. 2014;29(5):1283-94. doi: 10.1002/jbmr.2140.

8.

Circulating endothelial/skeletal progenitor cells for bone regeneration and healing.

Matsumoto T, Kuroda R, Mifune Y, Kawamoto A, Shoji T, Miwa M, Asahara T, Kurosaka M.

Bone. 2008 Sep;43(3):434-9. doi: 10.1016/j.bone.2008.05.001. Epub 2008 May 10. Review.

PMID:
18547890
9.

WISP-1 is an osteoblastic regulator expressed during skeletal development and fracture repair.

French DM, Kaul RJ, D'Souza AL, Crowley CW, Bao M, Frantz GD, Filvaroff EH, Desnoyers L.

Am J Pathol. 2004 Sep;165(3):855-67.

10.

Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair.

Wang Q, Huang C, Zeng F, Xue M, Zhang X.

Am J Pathol. 2010 Dec;177(6):3100-11. doi: 10.2353/ajpath.2010.100060. Epub 2010 Oct 22.

11.

Mobilization of endogenous stem cell populations enhances fracture healing in a murine femoral fracture model.

Toupadakis CA, Granick JL, Sagy M, Wong A, Ghassemi E, Chung DJ, Borjesson DL, Yellowley CE.

Cytotherapy. 2013 Sep;15(9):1136-47. doi: 10.1016/j.jcyt.2013.05.004. Epub 2013 Jul 3.

12.

[Transdifferentiation of chondrocytes into osteogenic cells].

Włodarski K, Włodarski P, Galus R, Brodzikowska A.

Chir Narzadow Ruchu Ortop Pol. 2006;71(3):199-203. Review. Polish.

PMID:
17131726
13.

Stromal cell-derived factor-1 and monocyte chemotactic protein-3 improve recruitment of osteogenic cells into sites of musculoskeletal repair.

Shinohara K, Greenfield S, Pan H, Vasanji A, Kumagai K, Midura RJ, Kiedrowski M, Penn MS, Muschler GF.

J Orthop Res. 2011 Jul;29(7):1064-9. doi: 10.1002/jor.21374. Epub 2011 Feb 24.

14.

Generation of novel bone forming cells (monoosteophils) from the cathelicidin-derived peptide LL-37 treated monocytes.

Zhang Z, Shively JE.

PLoS One. 2010 Nov 15;5(11):e13985. doi: 10.1371/journal.pone.0013985.

15.

Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro.

Heng BC, Cao T, Stanton LW, Robson P, Olsen B.

J Bone Miner Res. 2004 Sep;19(9):1379-94. Epub 2004 Jul 26. Review.

16.

Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair.

Lavoie JF, Biernaskie JA, Chen Y, Bagli D, Alman B, Kaplan DR, Miller FD.

Stem Cells Dev. 2009 Jul-Aug;18(6):893-906. doi: 10.1089/scd.2008.0260.

PMID:
18834279
17.

Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration.

Dirckx N, Van Hul M, Maes C.

Birth Defects Res C Embryo Today. 2013 Sep;99(3):170-91. doi: 10.1002/bdrc.21047. Review.

PMID:
24078495
18.

BMP2 is superior to BMP4 for promoting human muscle-derived stem cell-mediated bone regeneration in a critical-sized calvarial defect model.

Gao X, Usas A, Lu A, Tang Y, Wang B, Chen CW, Li H, Tebbets JC, Cummins JH, Huard J.

Cell Transplant. 2013;22(12):2393-408. doi: 10.3727/096368912X658854. Epub 2012 Nov 1.

19.

Bone morphogenetic protein 2 gene transduction enhances the osteogenic potential of human urine-derived stem cells.

Guan J, Zhang J, Zhu Z, Niu X, Guo S, Wang Y, Zhang C.

Stem Cell Res Ther. 2015 Jan 7;6:5. doi: 10.1186/scrt539.

20.

The contribution of different cell lineages to bone repair: exploring a role for muscle stem cells.

Schindeler A, Liu R, Little DG.

Differentiation. 2009 Jan;77(1):12-8. doi: 10.1016/j.diff.2008.09.007. Epub 2008 Oct 22. Review.

PMID:
19281760

Supplemental Content

Support Center