Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 190

1.

Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode.

Markevich E, Salitra G, Fridman K, Sharabi R, Gershinsky G, Garsuch A, Semrau G, Schmidt MA, Aurbach D.

Langmuir. 2014 Jul 1;30(25):7414-24. doi: 10.1021/la501368y. Epub 2014 Jun 17.

PMID:
24885475
2.

Performance improvement and failure mechanism of LiNi(0.5)Mn(1.5)O4/graphite cells with biphenyl additive.

Xulai Y, Junlong X, Xu L, Tao W, Wen P, Jia X.

Phys Chem Chem Phys. 2014 Nov 28;16(44):24373-81. doi: 10.1039/c4cp03173c.

PMID:
25300778
3.

Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes.

Etacheri V, Haik O, Goffer Y, Roberts GA, Stefan IC, Fasching R, Aurbach D.

Langmuir. 2012 Jan 10;28(1):965-76. doi: 10.1021/la203712s. Epub 2011 Dec 6.

PMID:
22103983
4.

Li3PO4-coated LiNi0.5Mn1.5O4: a stable high-voltage cathode material for lithium-ion batteries.

Chong J, Xun S, Zhang J, Song X, Xie H, Battaglia V, Wang R.

Chemistry. 2014 Jun 10;20(24):7479-85. doi: 10.1002/chem.201304744. Epub 2014 Apr 29.

PMID:
24782138
5.

SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries.

Lindgren F, Xu C, Niedzicki L, Marcinek M, Gustafsson T, Björefors F, Edström K, Younesi R.

ACS Appl Mater Interfaces. 2016 Jun 22;8(24):15758-66. doi: 10.1021/acsami.6b02650. Epub 2016 Jun 9.

PMID:
27220376
6.

Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries.

Young BT, Heskett DR, Nguyen CC, Nie M, Woicik JC, Lucht BL.

ACS Appl Mater Interfaces. 2015 Sep 16;7(36):20004-11. doi: 10.1021/acsami.5b04845. Epub 2015 Sep 3.

PMID:
26305165
7.

High Voltage LiNi0.5Mn1.5O4/Li4Ti5O12 Lithium Ion Cells at Elevated Temperatures: Carbonate- versus Ionic Liquid-Based Electrolytes.

Cao X, He X, Wang J, Liu H, Röser S, Rad BR, Evertz M, Streipert B, Li J, Wagner R, Winter M, Cekic-Laskovic I.

ACS Appl Mater Interfaces. 2016 Oct 5;8(39):25971-25978. Epub 2016 Sep 23.

PMID:
27618412
8.

Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries.

Tang X, Jan SS, Qian Y, Xia H, Ni J, Savilov SV, Aldoshin SM.

Sci Rep. 2015 Jul 7;5:11958. doi: 10.1038/srep11958.

9.

Novel Slurry Electrolyte Containing Lithium Metasilicate for High Electrochemical Performance of a 5 V Cathode.

Ren Y, Mu D, Wu F, Wu B.

ACS Appl Mater Interfaces. 2015 Oct 21;7(41):22898-906. doi: 10.1021/acsami.5b05780. Epub 2015 Oct 7.

PMID:
26406110
10.

Sonochemical synthesis of LiNi0.5Mn1.5O4 and its electrochemical performance as a cathode material for 5 V Li-ion batteries.

Sivakumar P, Nayak PK, Markovsky B, Aurbach D, Gedanken A.

Ultrason Sonochem. 2015 Sep;26:332-9. doi: 10.1016/j.ultsonch.2015.02.007. Epub 2015 Feb 25.

PMID:
25748990
11.

Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry.

Liu YM, G Nicolau B, Esbenshade JL, Gewirth AA.

Anal Chem. 2016 Jul 19;88(14):7171-7. doi: 10.1021/acs.analchem.6b01292. Epub 2016 Jul 11.

PMID:
27346184
12.

Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.

Liu H, Wang J, Zhang X, Zhou D, Qi X, Qiu B, Fang J, Kloepsch R, Schumacher G, Liu Z, Li J.

ACS Appl Mater Interfaces. 2016 Feb;8(7):4661-75. doi: 10.1021/acsami.5b11389. Epub 2016 Feb 15.

PMID:
26824793
13.

Economical synthesis and promotion of the electrochemical performance of silicon nanowires as anode material in Li-ion batteries.

Xiao Y, Hao D, Chen H, Gong Z, Yang Y.

ACS Appl Mater Interfaces. 2013 Mar 13;5(5):1681-7. doi: 10.1021/am302731y. Epub 2013 Feb 19.

PMID:
23379363
14.
15.

Unravelling the Role of Electrochemically Active FePO4 Coating by Atomic Layer Deposition for Increased High-Voltage Stability of LiNi0.5Mn1.5O4 Cathode Material.

Xiao B, Liu J, Sun Q, Wang B, Banis MN, Zhao D, Wang Z, Li R, Cui X, Sham TK, Sun X.

Adv Sci (Weinh). 2015 Mar 25;2(5):1500022. eCollection 2015 May.

16.

Impact of Selected LiPF6 Hydrolysis Products on the High Voltage Stability of Lithium-Ion Battery Cells.

Wagner R, Korth M, Streipert B, Kasnatscheew J, Gallus DR, Brox S, Amereller M, Cekic-Laskovic I, Winter M.

ACS Appl Mater Interfaces. 2016 Nov 16;8(45):30871-30878. Epub 2016 Nov 4.

PMID:
27792312
17.

Lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide as a stabilizing electrolyte additive for improved high voltage applications in lithium-ion batteries.

Murmann P, Streipert B, Kloepsch R, Ignatiev N, Sartori P, Winter M, Cekic-Laskovic I.

Phys Chem Chem Phys. 2015 Apr 14;17(14):9352-8. doi: 10.1039/c5cp00483g. Epub 2015 Mar 11.

PMID:
25760031
18.

LiNi0.5Mn1.5O4 Cathodes for Lithium Ion Batteries: A Review.

Wang H.

J Nanosci Nanotechnol. 2015 Sep;15(9):6883-90.

PMID:
26716260
19.

Superconcentrated electrolytes for a high-voltage lithium-ion battery.

Wang J, Yamada Y, Sodeyama K, Chiang CH, Tateyama Y, Yamada A.

Nat Commun. 2016 Jun 29;7:12032. doi: 10.1038/ncomms12032.

20.

Free-standing LiNi0.5Mn1.5O4/carbon nanofiber network film as lightweight and high-power cathode for lithium ion batteries.

Fang X, Ge M, Rong J, Zhou C.

ACS Nano. 2014 May 27;8(5):4876-82. doi: 10.1021/nn500814v. Epub 2014 Apr 28.

PMID:
24773079

Supplemental Content

Support Center