Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 224

1.

SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates.

Bowen ME, Ayturk UM, Kurek KC, Yang W, Warman ML.

PLoS Genet. 2014 May 29;10(5):e1004364. doi: 10.1371/journal.pgen.1004364. eCollection 2014.

2.

Targeted disruption of Shp2 in chondrocytes leads to metachondromatosis with multiple cartilaginous protrusions.

Kim HK, Feng GS, Chen D, King PD, Kamiya N.

J Bone Miner Res. 2014 Mar;29(3):761-9. doi: 10.1002/jbmr.2062.

3.

Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling.

Yang W, Wang J, Moore DC, Liang H, Dooner M, Wu Q, Terek R, Chen Q, Ehrlich MG, Quesenberry PJ, Neel BG.

Nature. 2013 Jul 25;499(7459):491-5. doi: 10.1038/nature12396. Epub 2013 Jul 17.

4.

Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes.

Terpstra L, Prud'homme J, Arabian A, Takeda S, Karsenty G, Dedhar S, St-Arnaud R.

J Cell Biol. 2003 Jul 7;162(1):139-48. Epub 2003 Jun 30.

5.

ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation.

Chen Z, Yue SX, Zhou G, Greenfield EM, Murakami S.

J Bone Miner Res. 2015 May;30(5):765-74. doi: 10.1002/jbmr.2409.

6.

Cartilage-specific overexpression of ERRγ results in Chondrodysplasia and reduced chondrocyte proliferation.

Cardelli M, Zirngibl RA, Boetto JF, McKenzie KP, Troy TC, Turksen K, Aubin JE.

PLoS One. 2013 Dec 9;8(12):e81511. doi: 10.1371/journal.pone.0081511. eCollection 2013.

7.

Heparanase stimulates chondrogenesis and is up-regulated in human ectopic cartilage: a mechanism possibly involved in hereditary multiple exostoses.

Huegel J, Enomoto-Iwamoto M, Sgariglia F, Koyama E, Pacifici M.

Am J Pathol. 2015 Jun;185(6):1676-85. doi: 10.1016/j.ajpath.2015.02.014. Epub 2015 Apr 8.

8.

SHP2-Deficiency in Chondrocytes Deforms Orofacial Cartilage and Ciliogenesis in Mice.

Kamiya N, Shen J, Noda K, Kitami M, Feng GS, Chen D, Komatsu Y.

J Bone Miner Res. 2015 Nov;30(11):2028-32. doi: 10.1002/jbmr.2541. Epub 2015 Jul 28.

9.

Loss of β-catenin induces multifocal periosteal chondroma-like masses in mice.

Cantley L, Saunders C, Guttenberg M, Candela ME, Ohta Y, Yasuhara R, Kondo N, Sgariglia F, Asai S, Zhang X, Qin L, Hecht JT, Chen D, Yamamoto M, Toyosawa S, Dormans JP, Esko JD, Yamaguchi Y, Iwamoto M, Pacifici M, Enomoto-Iwamoto M.

Am J Pathol. 2013 Mar;182(3):917-27. doi: 10.1016/j.ajpath.2012.11.012. Epub 2012 Dec 25.

10.

Exostoses, enchondromatosis and metachondromatosis; diagnosis and management.

McFarlane J, Knight T, Sinha A, Cole T, Kiely N, Freeman R.

Acta Orthop Belg. 2016 Mar;82(1):102-5.

PMID:
26984661
11.

SHP2 Regulates the Osteogenic Fate of Growth Plate Hypertrophic Chondrocytes.

Wang L, Huang J, Moore DC, Zuo C, Wu Q, Xie L, von der Mark K, Yuan X, Chen D, Warman ML, Ehrlich MG, Yang W.

Sci Rep. 2017 Oct 5;7(1):12699. doi: 10.1038/s41598-017-12767-9.

12.

Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

Sgariglia F, Candela ME, Huegel J, Jacenko O, Koyama E, Yamaguchi Y, Pacifici M, Enomoto-Iwamoto M.

Bone. 2013 Nov;57(1):220-31. doi: 10.1016/j.bone.2013.08.012. Epub 2013 Aug 17.

13.

NOV (CCN3) regulation in the growth plate and CCN family member expression in cartilage neoplasia.

Yu C, Le AT, Yeger H, Perbal B, Alman BA.

J Pathol. 2003 Dec;201(4):609-15.

PMID:
14648665
14.

SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice.

Sasagawa S, Takemori H, Uebi T, Ikegami D, Hiramatsu K, Ikegawa S, Yoshikawa H, Tsumaki N.

Development. 2012 Mar;139(6):1153-63. doi: 10.1242/dev.072652. Epub 2012 Feb 8.

15.

Chondrocyte-specific knockout of Cbfβ reveals the indispensable function of Cbfβ in chondrocyte maturation, growth plate development and trabecular bone formation in mice.

Wu M, Li YP, Zhu G, Lu Y, Wang Y, Jules J, McConnell M, Serra R, Shao JZ, Chen W.

Int J Biol Sci. 2014 Jul 29;10(8):861-72. doi: 10.7150/ijbs.8521. eCollection 2014.

16.
17.

Chondrocyte-specific ablation of Osterix leads to impaired endochondral ossification.

Oh JH, Park SY, de Crombrugghe B, Kim JE.

Biochem Biophys Res Commun. 2012 Feb 24;418(4):634-40. doi: 10.1016/j.bbrc.2012.01.064. Epub 2012 Jan 21.

18.

c-Raf promotes angiogenesis during normal growth plate maturation.

Liu ES, Raimann A, Chae BT, Martins JS, Baccarini M, Demay MB.

Development. 2016 Jan 15;143(2):348-55. doi: 10.1242/dev.127142. Epub 2015 Dec 10.

19.

Association of cartilage-specific deletion of peroxisome proliferator-activated receptor γ with abnormal endochondral ossification and impaired cartilage growth and development in a murine model.

Monemdjou R, Vasheghani F, Fahmi H, Perez G, Blati M, Taniguchi N, Lotz M, St-Arnaud R, Pelletier JP, Martel-Pelletier J, Beier F, Kapoor M.

Arthritis Rheum. 2012 May;64(5):1551-61. doi: 10.1002/art.33490.

20.

Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development.

Guan Y, Yang X, Yang W, Charbonneau C, Chen Q.

FASEB J. 2014 Oct;28(10):4470-81. doi: 10.1096/fj.14-252783. Epub 2014 Jul 2.

Supplemental Content

Support Center