Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

β-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease.

Bæk KT, Gründling A, Mogensen RG, Thøgersen L, Petersen A, Paulander W, Frees D.

Antimicrob Agents Chemother. 2014 Aug;58(8):4593-603. doi: 10.1128/AAC.02802-14. Epub 2014 May 27.

2.

Contribution of peptidoglycan amidation to beta-lactam and lysozyme resistance in different genetic lineages of Staphylococcus aureus.

Figueiredo TA, Ludovice AM, Sobral RG.

Microb Drug Resist. 2014 Jun;20(3):238-49. doi: 10.1089/mdr.2014.0042. Epub 2014 May 5.

3.

The Global Regulon sarA Regulates β-Lactam Antibiotic Resistance in Methicillin-Resistant Staphylococcus aureus In Vitro and in Endovascular Infections.

Li L, Cheung A, Bayer AS, Chen L, Abdelhady W, Kreiswirth BN, Yeaman MR, Xiong YQ.

J Infect Dis. 2016 Nov 1;214(9):1421-1429. Epub 2016 Aug 19.

PMID:
27543672
4.

Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections.

Pozzi C, Waters EM, Rudkin JK, Schaeffer CR, Lohan AJ, Tong P, Loftus BJ, Pier GB, Fey PD, Massey RC, O'Gara JP.

PLoS Pathog. 2012;8(4):e1002626. doi: 10.1371/journal.ppat.1002626. Epub 2012 Apr 5.

5.

Staphylococcus aureus PBP4 is essential for beta-lactam resistance in community-acquired methicillin-resistant strains.

Memmi G, Filipe SR, Pinho MG, Fu Z, Cheung A.

Antimicrob Agents Chemother. 2008 Nov;52(11):3955-66. doi: 10.1128/AAC.00049-08. Epub 2008 Aug 25.

6.

Ceftaroline is active against heteroresistant methicillin-resistant Staphylococcus aureus clinical strains despite associated mutational mechanisms and intermediate levels of resistance.

Fernandez R, Paz LI, Rosato RR, Rosato AE.

Antimicrob Agents Chemother. 2014 Oct;58(10):5736-46. doi: 10.1128/AAC.03019-14. Epub 2014 Jul 14.

7.

The mechanism of heterogeneous beta-lactam resistance in MRSA: key role of the stringent stress response.

Kim C, Mwangi M, Chung M, Milheiriço C, de Lencastre H, Tomasz A.

PLoS One. 2013 Dec 9;8(12):e82814. doi: 10.1371/journal.pone.0082814. eCollection 2013. Erratum in: PLoS One. 2014;9(1). doi:10.1371/annotation/7775dee3-7a91-4c44-9125-c7634bf909e4. Milheirço, Catarina [corrected to Milheiriço, Catarina].

8.

How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function.

Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-López C, Kumarasiri M, Lastochkin E, Fishovitz J, Dawley M, Hesek D, Lee M, Johnson JW, Fisher JF, Chang M, Mobashery S, Hermoso JA.

Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16808-13. doi: 10.1073/pnas.1300118110. Epub 2013 Oct 1.

9.

The anti-repressor MecR2 promotes the proteolysis of the mecA repressor and enables optimal expression of β-lactam resistance in MRSA.

Arêde P, Milheiriço C, de Lencastre H, Oliveira DC.

PLoS Pathog. 2012;8(7):e1002816. doi: 10.1371/journal.ppat.1002816. Epub 2012 Jul 26.

10.

Role of the Stringent Stress Response in the Antibiotic Resistance Phenotype of Methicillin-Resistant Staphylococcus aureus.

Aedo S, Tomasz A.

Antimicrob Agents Chemother. 2016 Mar 25;60(4):2311-7. doi: 10.1128/AAC.02697-15. Print 2016 Apr.

13.

Evidence for the evolutionary steps leading to mecA-mediated β-lactam resistance in staphylococci.

Rolo J, Worning P, Boye Nielsen J, Sobral R, Bowden R, Bouchami O, Damborg P, Guardabassi L, Perreten V, Westh H, Tomasz A, de Lencastre H, Miragaia M.

PLoS Genet. 2017 Apr 10;13(4):e1006674. doi: 10.1371/journal.pgen.1006674. eCollection 2017 Apr.

14.

A PBP 2 mutant devoid of the transpeptidase domain abolishes spermine-β-lactam synergy in Staphylococcus aureus Mu50.

Yao X, Lu CD.

Antimicrob Agents Chemother. 2012 Jan;56(1):83-91. doi: 10.1128/AAC.05415-11. Epub 2011 Oct 17.

15.

The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting Penicillin-Binding Protein 2A.

Jousselin A, Manzano C, Biette A, Reed P, Pinho MG, Rosato AE, Kelley WL, Renzoni A.

Antimicrob Agents Chemother. 2015 Dec 28;60(3):1656-66. doi: 10.1128/AAC.02333-15.

16.

Exposure of clinical MRSA heterogeneous strains to β-lactams redirects metabolism to optimize energy production through the TCA cycle.

Keaton MA, Rosato RR, Plata KB, Singh CR, Rosato AE.

PLoS One. 2013 Aug 5;8(8):e71025. doi: 10.1371/journal.pone.0071025. Print 2013.

17.

Thioridazine induces major changes in global gene expression and cell wall composition in methicillin-resistant Staphylococcus aureus USA300.

Thorsing M, Klitgaard JK, Atilano ML, Skov MN, Kolmos HJ, Filipe SR, Kallipolitis BH.

PLoS One. 2013 May 17;8(5):e64518. doi: 10.1371/journal.pone.0064518. Print 2013.

18.

Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus.

Campbell J, Singh AK, Santa Maria JP Jr, Kim Y, Brown S, Swoboda JG, Mylonakis E, Wilkinson BJ, Walker S.

ACS Chem Biol. 2011 Jan 21;6(1):106-16. doi: 10.1021/cb100269f. Epub 2010 Nov 4.

19.

Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure.

Ropy A, Cabot G, Sánchez-Diener I, Aguilera C, Moya B, Ayala JA, Oliver A.

Antimicrob Agents Chemother. 2015 Jul;59(7):3925-34. doi: 10.1128/AAC.05150-14. Epub 2015 Apr 20.

20.

A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes.

Banerjee R, Gretes M, Harlem C, Basuino L, Chambers HF.

Antimicrob Agents Chemother. 2010 Nov;54(11):4900-2. doi: 10.1128/AAC.00594-10. Epub 2010 Aug 30.

Supplemental Content

Support Center