Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription.

Fan J, Cui Y, Zhou Y, Wan M, Wang W, Xie J, Li Y.

Bioresour Technol. 2014 Jul;164:214-20. doi: 10.1016/j.biortech.2014.04.087. Epub 2014 May 9.

PMID:
24859213
2.

Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors.

Fan J, Cui Y, Wan M, Wang W, Li Y.

Biotechnol Biofuels. 2014 Jan 30;7(1):17. doi: 10.1186/1754-6834-7-17.

3.

Screening and characterization of oleaginous Chlorella strains and exploration of photoautotrophic Chlorella protothecoides for oil production.

Sun Z, Zhou ZG, Gerken H, Chen F, Liu J.

Bioresour Technol. 2015 May;184:53-62. doi: 10.1016/j.biortech.2014.09.054. Epub 2014 Sep 18.

PMID:
25266686
4.

Genomic Foundation of Starch-to-Lipid Switch in Oleaginous Chlorella spp.

Fan J, Ning K, Zeng X, Luo Y, Wang D, Hu J, Li J, Xu H, Huang J, Wan M, Wang W, Zhang D, Shen G, Run C, Liao J, Fang L, Huang S, Jing X, Su X, Wang A, Bai L, Hu Z, Xu J, Li Y.

Plant Physiol. 2015 Dec;169(4):2444-61. doi: 10.1104/pp.15.01174. Epub 2015 Oct 20.

5.

Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana.

Rosenberg JN, Kobayashi N, Barnes A, Noel EA, Betenbaugh MJ, Oyler GA.

PLoS One. 2014 Apr 3;9(4):e92460. doi: 10.1371/journal.pone.0092460. eCollection 2014.

6.

Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production.

Fan J, Huang J, Li Y, Han F, Wang J, Li X, Wang W, Li S.

Bioresour Technol. 2012 May;112:206-11. doi: 10.1016/j.biortech.2012.02.046. Epub 2012 Feb 17.

PMID:
22406065
7.

Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P).

Li Y, Han F, Xu H, Mu J, Chen D, Feng B, Zeng H.

Bioresour Technol. 2014 Dec;174:24-32. doi: 10.1016/j.biortech.2014.09.142. Epub 2014 Oct 5.

PMID:
25463778
8.

Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition.

Cao J, Yuan H, Li B, Yang J.

Bioresour Technol. 2014;152:177-84. doi: 10.1016/j.biortech.2013.10.084. Epub 2013 Nov 5.

PMID:
24291318
9.

Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids.

Wang Y, Rischer H, Eriksen NT, Wiebe MG.

Bioresour Technol. 2013 Sep;144:608-14. doi: 10.1016/j.biortech.2013.07.027. Epub 2013 Jul 12.

PMID:
23907064
10.

Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed.

Han F, Huang J, Li Y, Wang W, Wang J, Fan J, Shen G.

Bioresour Technol. 2012 Aug;118:431-7. doi: 10.1016/j.biortech.2012.05.066. Epub 2012 May 24.

PMID:
22717560
11.

Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime.

Li Y, Xu H, Han F, Mu J, Chen D, Feng B, Zeng H.

Bioresour Technol. 2015 Sep;192:781-91. doi: 10.1016/j.biortech.2014.07.028. Epub 2014 Jul 11.

PMID:
25127016
12.

Suppression subtractive hybridization reveals transcript profiling of Chlorella under heterotrophy to photoautotrophy transition.

Fan J, Cui Y, Huang J, Wang W, Yin W, Hu Z, Li Y.

PLoS One. 2012;7(11):e50414. doi: 10.1371/journal.pone.0050414. Epub 2012 Nov 29.

13.

The boosted lipid accumulation in microalga Chlorella vulgaris by a heterotrophy and nutrition-limitation transition cultivation regime.

Liu T, Liu F, Wang C, Wang Z, Li Y.

World J Microbiol Biotechnol. 2016 Dec;32(12):202. Epub 2016 Oct 31.

PMID:
27796809
14.

Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production.

Shen Y, Yuan W, Pei Z, Mao E.

Appl Biochem Biotechnol. 2010 Mar;160(6):1674-84. doi: 10.1007/s12010-009-8659-z. Epub 2009 May 8.

PMID:
19424668
15.

Use of De Novo Transcriptome Libraries to Characterize a Novel Oleaginous Marine Chlorella Species during the Accumulation of Triacylglycerols.

Mansfeldt CB, Richter LV, Ahner BA, Cochlan WP, Richardson RE.

PLoS One. 2016 Feb 3;11(2):e0147527. doi: 10.1371/journal.pone.0147527. eCollection 2016.

16.

Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2.

Han F, Huang J, Li Y, Wang W, Wan M, Shen G, Wang J.

Bioresour Technol. 2013 May;136:418-24. doi: 10.1016/j.biortech.2013.03.017. Epub 2013 Mar 14.

PMID:
23567711
17.

Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production.

Arora N, Patel A, Pruthi PA, Pruthi V.

Bioresour Technol. 2016 Aug;213:79-87. doi: 10.1016/j.biortech.2016.02.112. Epub 2016 Mar 2.

PMID:
26970694
18.

The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana.

Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G.

Appl Microbiol Biotechnol. 2011 Aug;91(3):835-44. doi: 10.1007/s00253-011-3399-8. Epub 2011 Jun 23.

PMID:
21698379
19.

Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation.

Li Y, Mu J, Chen D, Han F, Xu H, Kong F, Xie F, Feng B.

Bioresour Technol. 2013 Nov;148:283-92. doi: 10.1016/j.biortech.2013.08.153. Epub 2013 Sep 5.

PMID:
24055971
20.

Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis.

Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z.

Bioresour Technol. 2014;152:292-8. doi: 10.1016/j.biortech.2013.10.092. Epub 2013 Nov 6.

PMID:
24308944

Supplemental Content

Support Center