Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

mTORC2 in the center of cancer metabolic reprogramming.

Masui K, Cavenee WK, Mischel PS.

Trends Endocrinol Metab. 2014 Jul;25(7):364-73. doi: 10.1016/j.tem.2014.04.002. Epub 2014 May 21.

2.

mTORC2 and Metabolic Reprogramming in GBM: at the Interface of Genetics and Environment.

Masui K, Cavenee WK, Mischel PS.

Brain Pathol. 2015 Nov;25(6):755-9. doi: 10.1111/bpa.12307. Review.

3.

mTORC2 activity in brain cancer: Extracellular nutrients are required to maintain oncogenic signaling.

Masui K, Shibata N, Cavenee WK, Mischel PS.

Bioessays. 2016 Sep;38(9):839-44. doi: 10.1002/bies.201600026. Epub 2016 Jul 18. Review.

4.

Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes.

Jhanwar-Uniyal M, Gillick JL, Neil J, Tobias M, Thwing ZE, Murali R.

Adv Biol Regul. 2015 Jan;57:64-74. doi: 10.1016/j.jbior.2014.09.004. Epub 2014 Sep 18.

PMID:
25442674
5.

Glucose-dependent acetylation of Rictor promotes targeted cancer therapy resistance.

Masui K, Tanaka K, Ikegami S, Villa GR, Yang H, Yong WH, Cloughesy TF, Yamagata K, Arai N, Cavenee WK, Mischel PS.

Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9406-11. doi: 10.1073/pnas.1511759112. Epub 2015 Jul 13.

6.

Phosphorylation of the Hippo Pathway Component AMOTL2 by the mTORC2 Kinase Promotes YAP Signaling, Resulting in Enhanced Glioblastoma Growth and Invasiveness.

Artinian N, Cloninger C, Holmes B, Benavides-Serrato A, Bashir T, Gera J.

J Biol Chem. 2015 Aug 7;290(32):19387-401. doi: 10.1074/jbc.M115.656587. Epub 2015 May 21.

7.

mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc.

Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, Iwanami A, Liu F, Villa GR, Gu Y, Campos C, Zhu S, Yang H, Yong WH, Cloughesy TF, Mellinghoff IK, Cavenee WK, Shaw RJ, Mischel PS.

Cell Metab. 2013 Nov 5;18(5):726-39. doi: 10.1016/j.cmet.2013.09.013. Epub 2013 Oct 17.

8.

mTORC2 dictates Warburg effect and drug resistance.

Masui K, Cavenee WK, Mischel PS.

Cell Cycle. 2014;13(7):1053-4. doi: 10.4161/cc.28377. Epub 2014 Feb 28. No abstract available.

9.

mTOR-dependent cell survival mechanisms.

Hung CM, Garcia-Haro L, Sparks CA, Guertin DA.

Cold Spring Harb Perspect Biol. 2012 Dec 1;4(12). pii: a008771. doi: 10.1101/cshperspect.a008771. Review.

10.

Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin.

Zou Z, Chen J, Yang J, Bai X.

Curr Cancer Drug Targets. 2016;16(4):288-304. Review.

PMID:
26563881
11.

Role of mTOR in glioblastoma.

Duzgun Z, Eroglu Z, Biray Avci C.

Gene. 2016 Jan 10;575(2 Pt 1):187-90. doi: 10.1016/j.gene.2015.08.060. Epub 2015 Sep 1. Review.

PMID:
26341051
12.

Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation.

Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, Pearce EJ.

Immunity. 2016 Oct 18;45(4):817-830. doi: 10.1016/j.immuni.2016.09.016.

13.

mTORC2 Regulates Amino Acid Metabolism in Cancer by Phosphorylation of the Cystine-Glutamate Antiporter xCT.

Gu Y, Albuquerque CP, Braas D, Zhang W, Villa GR, Bi J, Ikegami S, Masui K, Gini B, Yang H, Gahman TC, Shiau AK, Cloughesy TF, Christofk HR, Zhou H, Guan KL, Mischel PS.

Mol Cell. 2017 Jul 6;67(1):128-138.e7. doi: 10.1016/j.molcel.2017.05.030. Epub 2017 Jun 22.

14.

Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2).

Lamming DW, Demirkan G, Boylan JM, Mihaylova MM, Peng T, Ferreira J, Neretti N, Salomon A, Sabatini DM, Gruppuso PA.

FASEB J. 2014 Jan;28(1):300-15. doi: 10.1096/fj.13-237743. Epub 2013 Sep 26.

15.

Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension.

Goncharov DA, Kudryashova TV, Ziai H, Ihida-Stansbury K, DeLisser H, Krymskaya VP, Tuder RM, Kawut SM, Goncharova EA.

Circulation. 2014 Feb 25;129(8):864-74. doi: 10.1161/CIRCULATIONAHA.113.004581. Epub 2013 Nov 22.

16.

Autoregulation of the mechanistic target of rapamycin (mTOR) complex 2 integrity is controlled by an ATP-dependent mechanism.

Chen CH, Kiyan V, Zhylkibayev AA, Kazyken D, Bulgakova O, Page KE, Bersimbaev RI, Spooner E, Sarbassov dos D.

J Biol Chem. 2013 Sep 20;288(38):27019-30. doi: 10.1074/jbc.M113.498055. Epub 2013 Aug 8.

17.

Activation of mTORC2 by association with the ribosome.

Zinzalla V, Stracka D, Oppliger W, Hall MN.

Cell. 2011 Mar 4;144(5):757-68. doi: 10.1016/j.cell.2011.02.014.

18.

Emerging function of mTORC2 as a core regulator in glioblastoma: metabolic reprogramming and drug resistance.

Wu SH, Bi JF, Cloughesy T, Cavenee WK, Mischel PS.

Cancer Biol Med. 2014 Dec;11(4):255-63. doi: 10.7497/j.issn.2095-3941.2014.04.004. Review.

19.

mTOR in aging, metabolism, and cancer.

Cornu M, Albert V, Hall MN.

Curr Opin Genet Dev. 2013 Feb;23(1):53-62. doi: 10.1016/j.gde.2012.12.005. Epub 2013 Jan 11. Review.

PMID:
23317514
20.

Novel Strategies to Discover Effective Drug Targets in Metabolic and Immune Therapy for Glioblastoma.

Wang G, Fu XL, Wang JJ, Guan R, Tang XJ.

Curr Cancer Drug Targets. 2017;17(1):17-39. Review.

PMID:
27562399

Supplemental Content

Support Center