Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

A domain in the transcription activator Gln3 specifically required for rapamycin responsiveness.

Rai R, Tate JJ, Shanmuganatham K, Howe MM, Cooper TG.

J Biol Chem. 2014 Jul 4;289(27):18999-9018. doi: 10.1074/jbc.M114.563668. Epub 2014 May 20.

2.

Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae.

Numamoto M, Tagami S, Ueda Y, Imabeppu Y, Sasano Y, Sugiyama M, Maekawa H, Harashima S.

J Biosci Bioeng. 2015 Aug;120(2):121-7. doi: 10.1016/j.jbiosc.2014.12.017. Epub 2015 Jan 29.

PMID:
25641578
3.

gln3 mutations dissociate responses to nitrogen limitation (nitrogen catabolite repression) and rapamycin inhibition of TorC1.

Rai R, Tate JJ, Nelson DR, Cooper TG.

J Biol Chem. 2013 Jan 25;288(4):2789-804. doi: 10.1074/jbc.M112.421826. Epub 2012 Dec 5.

4.

Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine.

Georis I, Tate JJ, Cooper TG, Dubois E.

J Biol Chem. 2011 Dec 30;286(52):44897-912. doi: 10.1074/jbc.M111.290577. Epub 2011 Oct 28.

5.
6.

Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae.

Tate JJ, Georis I, Dubois E, Cooper TG.

J Biol Chem. 2010 Jun 4;285(23):17880-95. doi: 10.1074/jbc.M109.085712. Epub 2010 Apr 8.

7.

Methionine sulfoximine treatment and carbon starvation elicit Snf1-independent phosphorylation of the transcription activator Gln3 in Saccharomyces cerevisiae.

Tate JJ, Rai R, Cooper TG.

J Biol Chem. 2005 Jul 22;280(29):27195-204. Epub 2005 May 23. Erratum in: J Biol Chem. 2007 Apr 27;282(17):13139.

8.
9.

Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine.

Rai R, Tate JJ, Shanmuganatham K, Howe MM, Nelson D, Cooper TG.

Genetics. 2015 Nov;201(3):989-1016. doi: 10.1534/genetics.115.177725. Epub 2015 Sep 2.

11.

GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation.

Tate JJ, Georis I, Rai R, Vierendeels F, Dubois E, Cooper TG.

G3 (Bethesda). 2015 May 29;5(8):1625-38. doi: 10.1534/g3.115.019307.

12.

Multiple Targets on the Gln3 Transcription Activator Are Cumulatively Required for Control of Its Cytoplasmic Sequestration.

Rai R, Tate JJ, Cooper TG.

G3 (Bethesda). 2016 May 3;6(5):1391-408. doi: 10.1534/g3.116.027615.

13.

Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae.

Georis I, Tate JJ, Cooper TG, Dubois E.

J Biol Chem. 2008 Apr 4;283(14):8919-29. doi: 10.1074/jbc.M708811200. Epub 2008 Feb 1.

16.

Five conditions commonly used to down-regulate tor complex 1 generate different physiological situations exhibiting distinct requirements and outcomes.

Tate JJ, Cooper TG.

J Biol Chem. 2013 Sep 20;288(38):27243-62. doi: 10.1074/jbc.M113.484386. Epub 2013 Aug 9.

17.
18.

Alterations in the Ure2 ╬▒Cap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation.

Feller A, Georis I, Tate JJ, Cooper TG, Dubois E.

J Biol Chem. 2013 Jan 18;288(3):1841-55. doi: 10.1074/jbc.M112.385054. Epub 2012 Nov 26.

19.

General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization.

Tate JJ, Buford D, Rai R, Cooper TG.

Genetics. 2017 Feb;205(2):633-655. doi: 10.1534/genetics.116.195800. Epub 2016 Dec 22.

PMID:
28007891
20.

Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently.

Tate JJ, Georis I, Feller A, Dubois E, Cooper TG.

J Biol Chem. 2009 Jan 23;284(4):2522-34. doi: 10.1074/jbc.M806162200. Epub 2008 Nov 17.

Supplemental Content

Support Center