Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108

1.

Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings.

Chen YA, Chi WC, Trinh NN, Huang LY, Chen YC, Cheng KT, Huang TL, Lin CY, Huang HJ.

PLoS One. 2014 May 19;9(5):e95163. doi: 10.1371/journal.pone.0095163. eCollection 2014.

2.

OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice.

Wang ZQ, Li GZ, Gong QQ, Li GX, Zheng SJ.

BMC Plant Biol. 2015 May 20;15:123. doi: 10.1186/s12870-015-0500-y.

3.

Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings.

Chen Z, Chen M, Jiang M.

Plant Physiol Biochem. 2017 Feb;111:179-192. doi: 10.1016/j.plaphy.2016.11.027. Epub 2016 Dec 1.

PMID:
27940269
4.

Mercury-induced biochemical and proteomic changes in rice roots.

Chen YA, Chi WC, Huang TL, Lin CY, Quynh Nguyeh TT, Hsiung YC, Chia LC, Huang HJ.

Plant Physiol Biochem. 2012 Jun;55:23-32. doi: 10.1016/j.plaphy.2012.03.008. Epub 2012 Mar 30.

PMID:
22522577
5.

Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid.

Chi WC, Chen YA, Hsiung YC, Fu SF, Chou CH, Trinh NN, Chen YC, Huang HJ.

BMC Genomics. 2013 May 25;14:351. doi: 10.1186/1471-2164-14-351.

6.

Identification of transcriptome profiles and signaling pathways for the allelochemical juglone in rice roots.

Chi WC, Fu SF, Huang TL, Chen YA, Chen CC, Huang HJ.

Plant Mol Biol. 2011 Dec;77(6):591-607. doi: 10.1007/s11103-011-9841-6. Epub 2011 Nov 5.

PMID:
22065257
7.

Hg-responsive proteins identified in wheat seedlings using iTRAQ analysis and the role of ABA in Hg stress.

Kang G, Li G, Wang L, Wei L, Yang Y, Wang P, Yang Y, Wang Y, Feng W, Wang C, Guo T.

J Proteome Res. 2015 Jan 2;14(1):249-67. doi: 10.1021/pr5006873. Epub 2014 Nov 5.

PMID:
25330896
8.

Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen.

Chandran AK, Priatama RA, Kumar V, Xuan Y, Je BI, Kim CM, Jung KH, Han CD.

J Plant Physiol. 2016 Aug 1;200:62-75. doi: 10.1016/j.jplph.2016.06.005. Epub 2016 Jun 15.

PMID:
27340859
9.

Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots.

Huang TL, Nguyen QT, Fu SF, Lin CY, Chen YC, Huang HJ.

Plant Mol Biol. 2012 Dec;80(6):587-608. doi: 10.1007/s11103-012-9969-z. Epub 2012 Sep 18.

PMID:
22987115
10.

Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed.

Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ.

BMC Plant Biol. 2011 Feb 16;11:34. doi: 10.1186/1471-2229-11-34.

11.

Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice.

Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS.

J Exp Bot. 2010 Jun;61(10):2807-18. doi: 10.1093/jxb/erq120. Epub 2010 May 11.

12.

Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).

Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J.

PLoS One. 2016 Jan 11;11(1):e0146242. doi: 10.1371/journal.pone.0146242. eCollection 2016.

13.

Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress.

Zeng F, Wu X, Qiu B, Wu F, Jiang L, Zhang G.

Planta. 2014 Aug;240(2):291-308. doi: 10.1007/s00425-014-2077-3. Epub 2014 May 13.

PMID:
24819712
14.

Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components.

Shankar A, Singh A, Kanwar P, Srivastava AK, Pandey A, Suprasanna P, Kapoor S, Pandey GK.

PLoS One. 2013 Jul 29;8(7):e70321. doi: 10.1371/journal.pone.0070321. Print 2013.

15.

The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice.

Diédhiou CJ, Popova OV, Dietz KJ, Golldack D.

BMC Plant Biol. 2008 Apr 28;8:49. doi: 10.1186/1471-2229-8-49.

16.

Transcriptomic Analysis of Responses to Imbalanced Carbon: Nitrogen Availabilities in Rice Seedlings.

Huang A, Sang Y, Sun W, Fu Y, Yang Z.

PLoS One. 2016 Nov 7;11(11):e0165732. doi: 10.1371/journal.pone.0165732. eCollection 2016.

17.
18.

MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice.

Yang C, Ma B, He SJ, Xiong Q, Duan KX, Yin CC, Chen H, Lu X, Chen SY, Zhang JS.

Plant Physiol. 2015 Sep;169(1):148-65. doi: 10.1104/pp.15.00353. Epub 2015 May 20.

19.

Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization.

Zhang M, Liu X, Yuan L, Wu K, Duan J, Wang X, Yang L.

Plant Physiol Biochem. 2012 Jan;50(1):79-86. doi: 10.1016/j.plaphy.2011.07.015. Epub 2011 Aug 9.

PMID:
21855360
20.

Genome-Wide Transcriptome Analysis of Cadmium Stress in Rice.

Oono Y, Yazawa T, Kanamori H, Sasaki H, Mori S, Handa H, Matsumoto T.

Biomed Res Int. 2016;2016:9739505. doi: 10.1155/2016/9739505. Epub 2016 Feb 29.

Supplemental Content

Support Center