Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

2.

Function discovery and structural characterization of a methylphosphonate esterase.

Xiang DF, Patskovsky Y, Nemmara VV, Toro R, Almo SC, Raushel FM.

Biochemistry. 2015 May 12;54(18):2919-30. doi: 10.1021/acs.biochem.5b00199.

3.

Functional annotation and three-dimensional structure of Dr0930 from Deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily.

Xiang DF, Kolb P, Fedorov AA, Meier MM, Fedorov LV, Nguyen TT, Sterner R, Almo SC, Shoichet BK, Raushel FM.

Biochemistry. 2009 Mar 17;48(10):2237-47. doi: 10.1021/bi802274f.

4.

Functional annotation of two new carboxypeptidases from the amidohydrolase superfamily of enzymes.

Xiang DF, Xu C, Kumaran D, Brown AC, Sauder JM, Burley SK, Swaminathan S, Raushel FM.

Biochemistry. 2009 Jun 2;48(21):4567-76. doi: 10.1021/bi900453u.

5.

Functional identification and structure determination of two novel prolidases from cog1228 in the amidohydrolase superfamily .

Xiang DF, Patskovsky Y, Xu C, Fedorov AA, Fedorov EV, Sisco AA, Sauder JM, Burley SK, Almo SC, Raushel FM.

Biochemistry. 2010 Aug 10;49(31):6791-803. doi: 10.1021/bi100897u.

6.

Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents.

Tsai PC, Fox N, Bigley AN, Harvey SP, Barondeau DP, Raushel FM.

Biochemistry. 2012 Aug 14;51(32):6463-75.

7.

Functional annotation and three-dimensional structure of an incorrectly annotated dihydroorotase from cog3964 in the amidohydrolase superfamily.

Ornelas A, Korczynska M, Ragumani S, Kumaran D, Narindoshvili T, Shoichet BK, Swaminathan S, Raushel FM.

Biochemistry. 2013 Jan 8;52(1):228-38. doi: 10.1021/bi301483z.

8.

Structure and catalytic mechanism of LigI: insight into the amidohydrolase enzymes of cog3618 and lignin degradation.

Hobbs ME, Malashkevich V, Williams HJ, Xu C, Sauder JM, Burley SK, Almo SC, Raushel FM.

Biochemistry. 2012 Apr 24;51(16):3497-507. doi: 10.1021/bi300307b.

10.

The thioesterase I of Escherichia coli has arylesterase activity and shows stereospecificity for protease substrates.

Lee YL, Chen JC, Shaw JF.

Biochem Biophys Res Commun. 1997 Feb 13;231(2):452-6.

PMID:
9070299
11.
12.

Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli.

Martí-Arbona R, Fresquet V, Thoden JB, Davis ML, Holden HM, Raushel FM.

Biochemistry. 2005 May 17;44(19):7115-24.

PMID:
15882050
13.

Stereochemical constraints on the substrate specificity of phosphotriesterase.

Hong SB, Raushel FM.

Biochemistry. 1999 Jan 26;38(4):1159-65.

PMID:
9930975
14.

Stereoselective esterase from Pseudomonas putida IFO12996 reveals alpha/beta hydrolase folds for D-beta-acetylthioisobutyric acid synthesis.

Elmi F, Lee HT, Huang JY, Hsieh YC, Wang YL, Chen YJ, Shaw SY, Chen CJ.

J Bacteriol. 2005 Dec;187(24):8470-6.

15.

Molecular basis of formaldehyde detoxification. Characterization of two S-formylglutathione hydrolases from Escherichia coli, FrmB and YeiG.

Gonzalez CF, Proudfoot M, Brown G, Korniyenko Y, Mori H, Savchenko AV, Yakunin AF.

J Biol Chem. 2006 May 19;281(20):14514-22.

16.
17.

Novel metagenome-derived carboxylesterase that hydrolyzes β-lactam antibiotics.

Jeon JH, Kim SJ, Lee HS, Cha SS, Lee JH, Yoon SH, Koo BS, Lee CM, Choi SH, Lee SH, Kang SG, Lee JH.

Appl Environ Microbiol. 2011 Nov;77(21):7830-6. doi: 10.1128/AEM.05363-11.

18.
20.

Roles of tryptophan residue and disulfide bond in the variable lid region of oxidized polyvinyl alcohol hydrolase.

Yang Y, Ko TP, Liu L, Li J, Huang CH, Chen J, Guo RT, Du G.

Biochem Biophys Res Commun. 2014 Sep 26;452(3):509-14. doi: 10.1016/j.bbrc.2014.08.106.

PMID:
25173935

Supplemental Content

Support Center