Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Corpectomy cage subsidence with rectangular versus round endcaps.

Deukmedjian AR, Manwaring J, Le TV, Turner AW, Uribe JS.

J Clin Neurosci. 2014 Sep;21(9):1632-6. doi: 10.1016/j.jocn.2013.12.028. Epub 2014 May 13.

PMID:
24831343
2.

Contribution of Round vs. Rectangular Expandable Cage Endcaps to Spinal Stability in a Cadaveric Corpectomy Model.

Mundis GM, Eastlack RK, Moazzaz P, Turner AW, Cornwall GB.

Int J Spine Surg. 2015 Oct 22;9:53. doi: 10.14444/2053. eCollection 2015.

3.

Can a novel rectangular footplate provide higher resistance to subsidence than circular footplates? An ex vivo biomechanical study.

Pekmezci M, McDonald E, Kennedy A, Dedini R, McClellan T, Ames C, Deviren V.

Spine (Phila Pa 1976). 2012 Sep 1;37(19):E1177-81. doi: 10.1097/BRS.0b013e3182647c0b.

PMID:
22718226
4.

The effects of design and positioning of carbon fiber lumbar interbody cages and their subsidence in vertebral bodies.

Lam FC, Alkalay R, Groff MW.

J Spinal Disord Tech. 2012 Apr;25(2):116-22. doi: 10.1097/BSD.0b013e31820ef778.

PMID:
21430566
5.

Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.

Huang P, Gupta MC, Sarigul-Klijn N, Hazelwood S.

Spine J. 2006 Nov-Dec;6(6):648-58. Epub 2006 Oct 11.

PMID:
17088195
6.

In vitro evaluation of a lateral expandable cage and its comparison with a static device for lumbar interbody fusion: a biomechanical investigation.

Gonzalez-Blohm SA, Doulgeris JJ, Aghayev K, Lee WE 3rd, Laun J, Vrionis FD.

J Neurosurg Spine. 2014 Apr;20(4):387-95. doi: 10.3171/2013.12.SPINE13798. Epub 2014 Jan 31.

PMID:
24484306
7.

Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages.

Krammer M, Dietl R, Lumenta CB, Kettler A, Wilke HJ, Büttner A, Claes L.

Acta Neurochir (Wien). 2001 Dec;143(12):1217-22.

PMID:
11810385
8.

Comparison of expandable and fixed interbody cages in a human cadaver corpectomy model, part I: endplate force characteristics.

Pekmezci M, Tang JA, Cheng L, Modak A, McClellan RT, Buckley JM, Ames CP.

J Neurosurg Spine. 2012 Oct;17(4):321-6. doi: 10.3171/2012.7.SPINE12171. Epub 2012 Aug 17.

PMID:
22900505
9.

Subsidence resulting from simulated postoperative neck movements: an in vitro investigation with a new cervical fusion cage.

Wilke HJ, Kettler A, Goetz C, Claes L.

Spine (Phila Pa 1976). 2000 Nov 1;25(21):2762-70.

PMID:
11064521
10.

Radiological outcomes of static vs expandable titanium cages after corpectomy: a retrospective cohort analysis of subsidence.

Lau D, Song Y, Guan Z, La Marca F, Park P.

Neurosurgery. 2013 Apr;72(4):529-39; discussion 528-9. doi: 10.1227/NEU.0b013e318282a558.

PMID:
23246824
11.

A two-cage reconstruction versus a single mega-cage reconstruction for lumbar interbody fusion: an experimental comparison.

Murakami H, Horton WC, Tomita K, Hutton WC.

Eur Spine J. 2004 Aug;13(5):432-40. Epub 2004 Mar 27.

12.
13.

Subsidence after anterior lumbar interbody fusion using paired stand-alone rectangular cages.

Choi JY, Sung KH.

Eur Spine J. 2006 Jan;15(1):16-22. Epub 2005 Apr 21.

14.

Impact of constrained dual-screw anchorage on holding strength and the resistance to cyclic loading in anterior spinal deformity surgery: a comparative biomechanical study.

Koller H, Fierlbeck J, Auffarth A, Niederberger A, Stephan D, Hitzl W, Augat P, Zenner J, Blocher M, Blocher M, Resch H, Mayer M.

Spine (Phila Pa 1976). 2014 Mar 15;39(6):E390-8. doi: 10.1097/BRS.0000000000000200.

PMID:
24384666
15.

Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion.

Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L.

J Neurosurg Spine. 2013 Jul;19(1):110-8. doi: 10.3171/2013.4.SPINE12319. Epub 2013 May 10.

PMID:
23662890
16.

Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion.

Bhatia NN, Lee KH, Bui CN, Luna M, Wahba GM, Lee TQ.

Spine (Phila Pa 1976). 2012 Jan 15;37(2):E79-85. doi: 10.1097/BRS.0b013e3182226ba6.

PMID:
21629171
17.

Comparison of Expandable and Fixed Interbody Cages in a Human Cadaver Corpectomy Model: Fatigue Characteristics.

Pekmezci M, Tang JA, Cheng L, Modak A, McClellan RT, Buckley JM, Ames CP.

Clin Spine Surg. 2016 Nov;29(9):387-393.

PMID:
22925989
18.

Anterior cement augmentation of adjacent levels after vertebral body replacement leads to superior stability of the corpectomy cage under cyclic loading - a biomechanical investigation.

Oberkircher L, Krüger A, Hörth D, Hack J, Ruchholtz S, Fleege C, Rauschmann M, Arabmotlagh M.

Spine J. 2017 Nov 21. pii: S1529-9430(17)31145-2. doi: 10.1016/j.spinee.2017.10.068. [Epub ahead of print]

PMID:
29174458
19.

Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion.

Kim MC, Chung HT, Cho JL, Kim DJ, Chung NS.

J Spinal Disord Tech. 2013 Apr;26(2):87-92. doi: 10.1097/BSD.0b013e318237b9b1.

PMID:
23529151
20.

An in vitro biomechanical investigation: variable positioning of leopard carbon fiber interbody cages.

Quigley KJ, Alander DH, Bledsoe JG.

J Spinal Disord Tech. 2008 Aug;21(6):442-7. doi: 10.1097/BSD.0b013e3181568637.

PMID:
18679101

Supplemental Content

Support Center