Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 160

1.

Use of Bacillus subtilis PXN21 spores for suppression of Clostridium difficile infection symptoms in a murine model.

Colenutt C, Cutting SM.

FEMS Microbiol Lett. 2014 Sep;358(2):154-61. doi: 10.1111/1574-6968.12468. Epub 2014 May 29.

2.

Clostridium difficile spore biology: sporulation, germination, and spore structural proteins.

Paredes-Sabja D, Shen A, Sorg JA.

Trends Microbiol. 2014 Jul;22(7):406-16. doi: 10.1016/j.tim.2014.04.003. Epub 2014 May 7. Review.

3.

Oritavancin does not induce Clostridium difficile germination and toxin production in hamsters or a human gut model.

Freeman J, Marquis M, Crowther GS, Todhunter SL, Fawley WN, Chilton CH, Moeck G, Lehoux D, Wilcox MH.

J Antimicrob Chemother. 2012 Dec;67(12):2919-26. doi: 10.1093/jac/dks309. Epub 2012 Aug 16.

PMID:
22899803
4.

Probiotics in Clostridium difficile infection: reviewing the need for a multistrain probiotic.

Hell M, Bernhofer C, Stalzer P, Kern JM, Claassen E.

Benef Microbes. 2013 Mar 1;4(1):39-51. doi: 10.3920/BM2012.0049. Review.

PMID:
23434948
5.

A new strategy for the prevention of Clostridium difficile infection.

Howerton A, Patra M, Abel-Santos E.

J Infect Dis. 2013 May 15;207(10):1498-504. doi: 10.1093/infdis/jit068. Epub 2013 Feb 18.

PMID:
23420906
6.

Molecular basis of early stages of Clostridium difficile infection: germination and colonization.

Sarker MR, Paredes-Sabja D.

Future Microbiol. 2012 Aug;7(8):933-43. doi: 10.2217/fmb.12.64. Review.

PMID:
22913353
7.

Germination efficiency of clinical Clostridium difficile spores and correlation with ribotype, disease severity and therapy failure.

Moore P, Kyne L, Martin A, Solomon K.

J Med Microbiol. 2013 Sep;62(Pt 9):1405-13. doi: 10.1099/jmm.0.056614-0. Epub 2013 Mar 21.

PMID:
23518657
8.

Fate of ingested Clostridium difficile spores in mice.

Howerton A, Patra M, Abel-Santos E.

PLoS One. 2013 Aug 30;8(8):e72620. doi: 10.1371/journal.pone.0072620. eCollection 2013.

9.

A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination.

Donnelly ML, Li W, Li YQ, Hinkel L, Setlow P, Shen A.

MBio. 2017 Jan 17;8(1). pii: e02085-16. doi: 10.1128/mBio.02085-16.

10.

Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract.

Koenigsknecht MJ, Theriot CM, Bergin IL, Schumacher CA, Schloss PD, Young VB.

Infect Immun. 2015 Mar;83(3):934-41. doi: 10.1128/IAI.02768-14. Epub 2014 Dec 22.

11.

Clostridium difficile spore germination: an update.

Burns DA, Heap JT, Minton NP.

Res Microbiol. 2010 Nov;161(9):730-4. doi: 10.1016/j.resmic.2010.09.007. Epub 2010 Sep 21. Review.

PMID:
20863888
12.

Bacillus amyloliquefaciens as prophylactic treatment for Clostridium difficile-associated disease in a mouse model.

Geeraerts S, Ducatelle R, Haesebrouck F, Van Immerseel F.

J Gastroenterol Hepatol. 2015 Aug;30(8):1275-80. doi: 10.1111/jgh.12957.

PMID:
25800047
13.

Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores.

Negri A, Potocki W, Iwanicki A, Obuchowski M, Hinc K.

J Med Microbiol. 2013 Sep;62(Pt 9):1379-85. doi: 10.1099/jmm.0.057372-0. Epub 2013 Mar 8.

PMID:
23475909
14.

Outcome of relapsing Clostridium difficile infections do not correlate with virulence-, spore- and vegetative cell-associated phenotypes.

Plaza-Garrido Á, Miranda-Cárdenas C, Castro-Córdova P, Olguín-Araneda V, Cofré-Araneda G, Hernández-Rocha C, Carman R, Ibáñez P, Fawley WN, Wilcox MH, Gil F, Calderón IL, Fuentes JA, Guzmán-Durán AM, Alvarez-Lobos M, Paredes-Sabja D.

Anaerobe. 2015 Dec;36:30-8. doi: 10.1016/j.anaerobe.2015.09.005. Epub 2015 Sep 25.

PMID:
26403333
15.

A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity.

Gebhart D, Lok S, Clare S, Tomas M, Stares M, Scholl D, Donskey CJ, Lawley TD, Govoni GR.

MBio. 2015 Mar 24;6(2). pii: e02368-14. doi: 10.1128/mBio.02368-14.

16.

SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate.

Burns DA, Heap JT, Minton NP.

J Bacteriol. 2010 Feb;192(3):657-64. doi: 10.1128/JB.01209-09. Epub 2009 Nov 20.

17.

Evaluation of Bacillus subtilis strains as probiotics and their potential as a food ingredient.

Permpoonpattana P, Hong HA, Khaneja R, Cutting SM.

Benef Microbes. 2012 Jun 1;3(2):127-35. doi: 10.3920/BM2012.0002.

PMID:
22433662
18.

Comparison of planktonic and biofilm-associated communities of Clostridium difficile and indigenous gut microbiota in a triple-stage chemostat gut model.

Crowther GS, Chilton CH, Todhunter SL, Nicholson S, Freeman J, Baines SD, Wilcox MH.

J Antimicrob Chemother. 2014 Aug;69(8):2137-47. doi: 10.1093/jac/dku116. Epub 2014 Apr 30.

PMID:
24788662
19.

Effect of biotherapeutics on antitoxin IgG in experimentally induced Clostridium difficile infection.

Kaur S, Vaishnavi C, Kochhar R, Prasad KK, Ray P.

Indian J Med Microbiol. 2012 Oct-Dec;30(4):431-6. doi: 10.4103/0255-0857.103764.

20.

Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells.

Paredes-Sabja D, Sarker MR.

Anaerobe. 2011 Apr;17(2):78-84. doi: 10.1016/j.anaerobe.2011.02.001. Epub 2011 Feb 12.

PMID:
21315167

Supplemental Content

Support Center