Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Transcriptome-based analysis of kidney gene expression changes associated with diabetes in OVE26 mice, in the presence and absence of losartan treatment.

Komers R, Xu B, Fu Y, McClelland A, Kantharidis P, Mittal A, Cohen HT, Cohen DM.

PLoS One. 2014 May 14;9(5):e96987. doi: 10.1371/journal.pone.0096987. eCollection 2014.

2.

Pemt deficiency ameliorates endoplasmic reticulum stress in diabetic nephropathy.

Watanabe M, Nakatsuka A, Murakami K, Inoue K, Terami T, Higuchi C, Katayama A, Teshigawara S, Eguchi J, Ogawa D, Watanabe E, Wada J, Makino H.

PLoS One. 2014 Mar 25;9(3):e92647. doi: 10.1371/journal.pone.0092647. eCollection 2014.

3.

Identification of novel targets of diabetic nephropathy and PEDF peptide treatment using RNA-seq.

Rubin A, Salzberg AC, Imamura Y, Grivitishvilli A, Tombran-Tink J.

BMC Genomics. 2016 Nov 17;17(1):936.

4.

Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice.

Reddy MA, Sumanth P, Lanting L, Yuan H, Wang M, Mar D, Alpers CE, Bomsztyk K, Natarajan R.

Kidney Int. 2014 Feb;85(2):362-73. doi: 10.1038/ki.2013.387. Epub 2013 Oct 2.

5.

Calcium channel blocker enhances beneficial effects of an angiotensin II AT1 receptor blocker against cerebrovascular-renal injury in type 2 diabetic mice.

Rafiq K, Sherajee SJ, Hitomi H, Nakano D, Kobori H, Ohmori K, Mori H, Kobara H, Masaki T, Kohno M, Nishiyama A.

PLoS One. 2013 Dec 10;8(12):e82082. doi: 10.1371/journal.pone.0082082. eCollection 2013.

6.

Effects of angiotensin receptor blocker on oxidative stress and cardio-renal function in streptozotocin-induced diabetic rats.

Arozal W, Watanabe K, Veeraveedu PT, Ma M, Thandavarayan RA, Suzuki K, Tachikawa H, Kodama M, Aizawa Y.

Biol Pharm Bull. 2009 Aug;32(8):1411-6.

7.

The protective effects of beta-casomorphin-7 against glucose -induced renal oxidative stress in vivo and vitro.

Zhang W, Miao J, Wang S, Zhang Y.

PLoS One. 2013 May 3;8(5):e63472. doi: 10.1371/journal.pone.0063472. Print 2013.

8.

Epigenetic changes in renal genes dysregulated in mouse and rat models of type 1 diabetes.

Komers R, Mar D, Denisenko O, Xu B, Oyama TT, Bomsztyk K.

Lab Invest. 2013 May;93(5):543-52. doi: 10.1038/labinvest.2013.47. Epub 2013 Mar 18.

9.

Steroidogenic acute regulatory-related lipid transfer domain protein 5 localization and regulation in renal tubules.

Chen YC, Meier RK, Zheng S, Khundmiri SJ, Tseng MT, Lederer ED, Epstein PN, Clark BJ.

Am J Physiol Renal Physiol. 2009 Aug;297(2):F380-8. doi: 10.1152/ajprenal.90433.2008. Epub 2009 May 27.

10.

Combined vitamin D analog and AT1 receptor antagonist synergistically block the development of kidney disease in a model of type 2 diabetes.

Deb DK, Sun T, Wong KE, Zhang Z, Ning G, Zhang Y, Kong J, Shi H, Chang A, Li YC.

Kidney Int. 2010 Jun;77(11):1000-9. doi: 10.1038/ki.2010.22. Epub 2010 Feb 24.

11.

Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease.

Liu G, Sun Y, Li Z, Song T, Wang H, Zhang Y, Ge Z.

Biochem Biophys Res Commun. 2008 Jun 13;370(4):651-6. doi: 10.1016/j.bbrc.2008.04.031. Epub 2008 Apr 15.

PMID:
18420027
12.

Meprin-alpha in chronic diabetic nephropathy: interaction with the renin-angiotensin axis.

Mathew R, Futterweit S, Valderrama E, Tarectecan AA, Bylander JE, Bond JS, Trachtman H.

Am J Physiol Renal Physiol. 2005 Oct;289(4):F911-21. Epub 2005 Jun 7.

13.

Effects of the combination of an angiotensin II antagonist with an HMG-CoA reductase inhibitor in experimental diabetes.

Qin J, Zhang Z, Liu J, Sun L, Hu L, Cooper ME, Cao Z.

Kidney Int. 2003 Aug;64(2):565-71.

14.

Dual RAS blockade normalizes angiotensin-converting enzyme-2 expression and prevents hypertension and tubular apoptosis in Akita angiotensinogen-transgenic mice.

Lo CS, Liu F, Shi Y, Maachi H, Chenier I, Godin N, Filep JG, Ingelfinger JR, Zhang SL, Chan JS.

Am J Physiol Renal Physiol. 2012 Apr 1;302(7):F840-52. doi: 10.1152/ajprenal.00340.2011. Epub 2011 Dec 28.

15.

Genomic expression profiling and bioinformatics analysis on diabetic nephrology with ginsenoside Rg3.

Wang J, Cui C, Fu L, Xiao Z, Xie N, Liu Y, Yu L, Wang H, Luo B.

Mol Med Rep. 2016 Aug;14(2):1162-72. doi: 10.3892/mmr.2016.5349. Epub 2016 May 27.

16.

Effect of losartan on the glomerular protein expression profile of type 2 diabetic KKAy mice.

Fan QL, Yang G, Liu XD, Ma JF, Feng JM, Jiang Y, Wang LN.

J Nephrol. 2013 May-Jun;26(3):517-26. doi: 10.5301/jn.5000176. Epub 2012 Jun 7.

PMID:
22684654
17.

Losartan affects glomerular AKT and mTOR phosphorylation in an experimental model of type 1 diabetic nephropathy.

Mavroeidi V, Petrakis I, Stylianou K, Katsarou T, Giannakakis K, Perakis K, Vardaki E, Stratigis S, Ganotakis E, Papavasiliou S, Daphnis E.

J Histochem Cytochem. 2013 Jun;61(6):433-43. doi: 10.1369/0022155413482925. Epub 2013 Mar 1.

18.

Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function in db/db mice.

Nagata T, Fukuzawa T, Takeda M, Fukazawa M, Mori T, Nihei T, Honda K, Suzuki Y, Kawabe Y.

Br J Pharmacol. 2013 Oct;170(3):519-31. doi: 10.1111/bph.12269.

19.

Ursodeoxycholic Acid Ameliorated Diabetic Nephropathy by Attenuating Hyperglycemia-Mediated Oxidative Stress.

Cao A, Wang L, Chen X, Guo H, Chu S, Zhang X, Peng W.

Biol Pharm Bull. 2016 Aug 1;39(8):1300-8. doi: 10.1248/bpb.b16-00094. Epub 2016 May 18.

20.

Losartan ameliorates progression of glomerular structural changes in diabetic KKAy mice.

Sasaki M, Uehara S, Ohta H, Taguchi K, Kemi M, Nishikibe M, Matsumoto H.

Life Sci. 2004 Jul 2;75(7):869-80.

PMID:
15183078

Supplemental Content

Support Center